Skip to main content
Log in

Use of different adsorbents for sorption and Bacillus polymyxa protease immobilization

  • Session 6 Bioprocess Research and Development
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Proteases constitute one of the most important groups of industrial enzymes, accounting for at least 25% of the total enzyme sales, with two-thirds of the proteases produced commercially being of microbial origin (1). Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes or alternative, technologies, and the steadily increasing number of applications for immobilized enzymes. The general application of immobilized proteins and enzymes has played a central role in the expansion of biotechnology and synthesis-related industries. Proteases have been immobilized on natural and synthetic supports (2,3).

In the present work, a protease from Bacillus polymyxa was partially purified with 80% ammonium sulfate precipitation followed by dialysis and chromatography using a diethylaminoethyl (DEAE)-cellulose ion exchange column. Immobilization was evaluated by using different adsorbents (chitin, chitosan, alginate, synthetic zeolite, and raw zeolite) and the storage stability and recycle of the immobilized protease determined. Immobilization yields were estimated to be 96% and 7.5%, by using alginate and chitosan, respectively, after, 24 h. The yield of the immobilization was 17% for alginate at 16h and the enzyme did not adsorb on the chitin, chitosan, synthetic zeolite, and raw zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moon, S. M. and Satish, J., (1993), Biotech. Bioeng. 41, 43–54.

    Article  CAS  Google Scholar 

  2. Sierecka, K. (1998), Int. J. Biochem. Cell Biol. 30, 579–595.

    Article  PubMed  CAS  Google Scholar 

  3. Longo, A. M., Novella, I. S., Garcia, L. A., and Diaz, M. (1999), J. Biosci. Bioeng. 88, 35–40.

    Article  PubMed  CAS  Google Scholar 

  4. Kokufuta, E. (1993), Adv. Polym. Sci. 110, 157–177.

    Article  CAS  Google Scholar 

  5. Liang, J. F., Li, Y. T., and Yang, C. (2000), J. Pharm. Sci. 89, 979–990.

    Article  PubMed  CAS  Google Scholar 

  6. Cabral, M. S. (1993), In: Thermostability of Enzymes, Gupta, M. N., ed., Springer-Verlag, Berlin, pp. 162–181.

    Google Scholar 

  7. Këstner, A. I. (1974), Russian Chem. Rev. 43, 690–705.

    Article  Google Scholar 

  8. Frost, G. M. and Moss, D. A. (1987), In: Biotechnology, Kennedy J., ed., New York.

  9. Pazlarova, J. and Tsaplina, I. (1988), Folia Microbial. 33, 267–272.

    Article  CAS  Google Scholar 

  10. Jensen, D. E. (1972), Biotechnol. Bioeng. 14, 647–662.

    Article  PubMed  CAS  Google Scholar 

  11. Bailey, J. E. and Ollis, D. F. (1987), In: Biochemical Engineering Fundamentals, McGraw-Hill, New York.

    Google Scholar 

  12. Yenigün, B. and Güvenilir, Y. (2003), Appl. Biochem. Biotechnol. 105–108, 677–687.

    Article  PubMed  Google Scholar 

  13. Gerze, A., Omay, D., and Güvenilir, Y., (2005), Appl., Biochem. Biotechnol. 121 (1–3), 335–346.

    Article  Google Scholar 

  14. Orhan, E., Omay, D., and Güvenilir, Y. (2005), Appl. Biochem. Biotechnol. 121 (1–3), 183–194.

    Article  PubMed  Google Scholar 

  15. Stoscheck, C. M. (1990), Methods Enzymol. 182, 50–69.

    PubMed  CAS  Google Scholar 

  16. McKevitt, A. S., Bajaksouzian, J. D., and Klinger, D. E. (1989), Appl. Environ. Microbiol. 57, 771–778.

    CAS  Google Scholar 

  17. Sexton, M. M., Jones, A. L., and Chaowagul, W. (1994), Can. J. Microbiol. 40, 903–910.

    Article  PubMed  CAS  Google Scholar 

  18. Rao, M. B., Tanksale, A. M., Ghatge, M. S., and Deshpande, V. V. (1998), Microbiol. Mol. Biol. Rev. 62, 597–635.

    PubMed  CAS  Google Scholar 

  19. Gao, J., Xu, J., Locascio, L. E., and Lee, C. S. (2001), Anal. Chem. 73, 2648–2655.

    Article  PubMed  CAS  Google Scholar 

  20. Cooper, J. W., Chen, J., Li, Y., and Lee, C. S. (2003), Anal. Chem. 75, 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  21. Batra, R. and Gupta, M. N. (1994), Biotech. Appl. Biochem. 19, 209–215.

    CAS  Google Scholar 

  22. Nisto, C., Emmenus, J., Gorton, L., and Ciucu, A. (1999), Anal. Chim. Acta 387 (3), 309–326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Omay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkkopru, I., Alpaslan, C., Omay, D. et al. Use of different adsorbents for sorption and Bacillus polymyxa protease immobilization. Appl Biochem Biotechnol 132, 1034–1040 (2006). https://doi.org/10.1385/ABAB:132:1:1034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:132:1:1034

Index Entries

Navigation