Evaluation of solid and submerged fermentations for the production of cyclodextrin glycosyltransferase by Paenibacillus campinasensis H69-3 and characterization of crude enzyme

Abstract

Cyclodextrin glycosyltransferase (CGTase) is an enzyme that produces cyclodextrins from starch by an intramolecular transglycosylation reaction. Cyclodextrins have been shown to have a number of applications in the food, cosmetic, pharmaceutical, and chemical industries. In the current study, the production of CGTase by Paenibacillus campinasensis strain H69-3 was examined in submerged and solid-state fermentations. P. campinasensis strain H69-3 was isolated from the soil, which grows at 45°C, and is a Gramvariable bacterium. Different substrate sources such as wheat bran, soybean bran, soybean extract, cassava solid residue, cassava starch, corn starch, and other combinations were used in the enzyme production. CGTase activity was highest in submerged fermentations with the greatest production observed at 48–72 h. The physical and chemical properties of CGTase were determined from the crude enzyme produced from submerged fermentations. The optimum temperature was found to be 70–75°C, and the activity was stable at 55°C for 1 h. The enzyme displayed two optimum pH values, 5.5 and 9.0 and was found to be stable between a pH of 4.5 and 11.0.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Bender, H. (1986), Adv. Biotechnol. Process 6, 31–71.

    CAS  MathSciNet  Google Scholar 

  2. 2

    Szejtli, J. (1997), J. Mater. Chem. 7, 575–587.

    Article  CAS  Google Scholar 

  3. 3

    Tonkova, A. (1998), Enzyme Microb. Technol. 22 678–686.

    Article  CAS  Google Scholar 

  4. 4

    Szejtli, J. (1982), Starch/Stärke 34, 379–385.

    Article  CAS  Google Scholar 

  5. 5

    Pszczola, D.E. (1988), Food Technol January, 96–100.

    Google Scholar 

  6. 6

    Allegre, M. and Deratani, A. (1994), Agroo Food Ind. Hi Technol. January/February, 9–17.

    Google Scholar 

  7. 7

    Nakamura, N. and Horikoshi, K. (1976), Agric. Biol. Chem. 40, 1785–1791.

    CAS  Google Scholar 

  8. 8

    Nakamura, N. and Horikoshi, K. (1976), Agric. Biol. Chem. 40, 935–941.

    CAS  Google Scholar 

  9. 9

    Yu, E. K. C., Aoki, H., and Misawa, M. (1988), Appl. Microbiol. Biotechnol. 28, 377–379.

    Article  CAS  Google Scholar 

  10. 10

    Tomita, K., Kaneda, M., Kawamura, K., and Nakanishi, K. (1993), J Fermen. Bioeng. 75, 89–92.

    Article  CAS  Google Scholar 

  11. 11

    Bovetto, L. J., Backer, D. P., Villette, J. R., Sicard, P. J., and Bouquelet, S. J.-L. (1992), Biotechnol. Appl. Biochem. 15, 48–58.

    PubMed  CAS  Google Scholar 

  12. 12

    Sabioni, J. G. and Park, Y. K. (1992), Starch/Stärke 44, 225–229.

    Article  CAS  Google Scholar 

  13. 13

    Yim, D. G., Sato, H. H., Park, Y. H. E., and Park, Y. K. (1997), J. Ind. Microbiol. Biotechnol. 18, 402–405.

    Article  CAS  Google Scholar 

  14. 14

    Matioli, G., Zanin, G. M., Guimarães, M. F., and Moraes, F. F. (1998), Appl. Biochem. Biotechnol. 70–72, 267–275.

    Google Scholar 

  15. 15

    Gawande, B. N., Singh, R. K., Chauhan, A. K., Goel, A., and Patkar, A. (1998), Enzyme Microb. Technol. 22, 288–291.

    Article  CAS  Google Scholar 

  16. 16

    Martins, R. F. and Hatti-Kaul, R. (2002), Enzyme Microb. Technol. 30, 116–124.

    Article  CAS  Google Scholar 

  17. 17

    Alves-Prado, H. F., Gomes, E., and DaSilva, R. (2002), Bol. SBCTA. 36, 43–54.

    Google Scholar 

  18. 18

    Chung, H. J., Yoon, S. H., Lee, M. J., et al. (1998), J. Agric. Food Chem. 46, 952–959.

    Article  CAS  Google Scholar 

  19. 19

    Kabavainova, L., Dobreva, E., and Miteva, V. (1999), J. Appl. Microbiol 86, 1017–1023.

    Google Scholar 

  20. 20

    Bender, H. (1977), Arch. Microbiol. 111, 271–281.

    PubMed  Article  CAS  Google Scholar 

  21. 21

    Gawande, B. N. and Patkar, A. Y. (2001), Enzyme Microb. Technol. 28, 9, 10.

    Article  Google Scholar 

  22. 22

    Mori, S., Hirose, S., Oya, T., and Kitahata, S. (1994), Biosc. Biotechnol. Biochem. 58, 1968–1972.

    CAS  Article  Google Scholar 

  23. 23

    Larsen, K. L., Duedhal-Olisen, L., Christensen, H. J. S., Mathiesen, F., Pedersen, L. H., and Zimmermann, W. (1998), Carbohyd. Res. 310, 211–219.

    Article  CAS  Google Scholar 

  24. 24

    Starnes, R. L. (1990), Cereal Foods World 35, 1094–1099.

    CAS  Google Scholar 

  25. 25

    Zamost, B. L., Nilsen, H. K., and Starnes, R. L. (1991), J. Ind. Microbiol. 8, 71–82.

    Article  CAS  Google Scholar 

  26. 26

    Wind, R. D., Libl, W., Buitelaar, R. M., et al. (1995), Appl. Environ. Microbiol. 61, 1257–1265.

    PubMed  CAS  Google Scholar 

  27. 27

    Tachibana, Y., Kuramura, A., Shirasaka, N., et al. (1997), Appl. Environ. Microbiol. 65, 1991–1997.

    Google Scholar 

  28. 28

    Raimbault, M. (1998), Eletr. J. Biotechnol. 1, 174–188.

    Article  Google Scholar 

  29. 29

    Ramakrishna, S. V., Saswathi, N., Sheela, R., and Jamuna, R. (1994), Enzyme Microb. Technol. 16, 441–444.

    Article  CAS  Google Scholar 

  30. 30

    Horikoshi, K. (1996) FEMS Microbiol. Rev. 18, 259–270.

    CAS  Google Scholar 

  31. 31

    Park, C. S., Park, K.H., and Kim, S. H. (1989), Agric. Biol. Chem. 53, 1167–1169.

    CAS  Google Scholar 

  32. 32

    Alves-Prado, H. F., Gomes, E., and DaSilva, R. (2002), Brazilian J Food Technol. 5, 189–196.

    Google Scholar 

  33. 33

    Dias, A. A. M., Andrade, C. M. M. C., and Linardi, V. R. (1992), Rev. Microbiol. 23, 189–193.

    CAS  Google Scholar 

  34. 34

    Fuwa, H. (1954), J. Biochem. 41, 583–603.

    CAS  Google Scholar 

  35. 35

    Pongsawasdi, P. and Yagisawa, M. (1987), J. Fermen. Technol. 65, 463–467.

    Article  CAS  Google Scholar 

  36. 36

    Mäkelä, M. J., Korpela, T. K., Puisto, J., and Laakso, S. V. (1988), Agric Food Chem. 36, 83–88.

    Article  Google Scholar 

  37. 37

    Sarath, G. (1996), In: Proteolytic Enzymes a Practical Approach. Beynon, R. J., Bond, J. S., (ed.), Oxford University Press, New York, pp. 25–55.

    Google Scholar 

  38. 38

    Hartree, E. F. (1972), Anal. Biochem. 48, 422–427.

    PubMed  Article  CAS  Google Scholar 

  39. 39

    Yoon, J.-H., Yim, D. K., Lee, J.-S., et al. (1998), Internat. J. System. Bacteriol. 48, 833–837.

    CAS  Article  Google Scholar 

  40. 40

    Bailey, J. E. and Ollis, D. F. (1986), Biochemical Engineering Fundamentals. 2nd edition, McGraw-Hill International Editions, New York.

    Google Scholar 

  41. 41

    Damaso, M. C. T., Andrade, C. M. M. C., Pereira, N. Jr, (2000), Appl. Biochem. Biotechnol. 84, 821–834.

    PubMed  Article  Google Scholar 

  42. 42

    Pandey, A. (1992), Process Biochem. 27, 109–117.

    Article  CAS  Google Scholar 

  43. 43

    Jamuna, R., Saswathi, N., Sheela, R., and Ramakrishna, S. V. (1993), Appl. Biochem. Biotechnol. 43, 163–176.

    PubMed  CAS  Article  Google Scholar 

  44. 44

    Salva, T. J. G., Lima, V. B., and Pagan, A. P. (1997), Rev. Microbiol. 28, 157–164.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberto Da Silva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alves-Prado, H.F., Gomes, E. & Da Silva, R. Evaluation of solid and submerged fermentations for the production of cyclodextrin glycosyltransferase by Paenibacillus campinasensis H69-3 and characterization of crude enzyme. Appl Biochem Biotechnol 129, 234–246 (2006). https://doi.org/10.1385/ABAB:129:1:234

Download citation

Index Entries

  • Cyclodextrin glycosyltransferase
  • Paenibacillus campinasensis
  • submerged fermentation
  • solid-state fermentation