Biofiltration methods for the removal of phenolic residues

Abstract

Industrial effluents from the pharmaceutical industry often contain high concentrations of phenolic compounds. The presence of “anthropogenic” organic compounds in the environment is a serious problem for human health; therefore, it merits special attention by the competent public agencies. Different methods have been proposed in the last two decades for the treatment of this kind of industrial residues, the most important of which are those utilizing absorption columns, vaporization and extraction, and biotechnological methods. Biofiltration is a method for the removal of contaminants present in liquid or gaseous effluents by the use of aerobic microorganisms, which are immobilized on solid or porous supports. Although several bacteria can utilize aromatic compounds as carbon and energy source, only a few of them are able to make this biodegradation effectively and with satisfactory rate. For this reason, more investigation is needed to ensure an efficient control of process parameters as well as to select the suited reactor configuration. The aim of this work is to provide an overview on the main aspects of biofiltration for the treatment of different industrial effluents, with particular concern to those coming from pharmaceutical industry and laboratories for the production of galenicals.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Edgington, S. M. (1994), Biotechnology 12, 1338–1342.

    PubMed  CAS  Google Scholar 

  2. 2

    Head, I. M. (1998), Microbiology 144, 599–608.

    CAS  Article  Google Scholar 

  3. 3

    Eckenfelder, W. W. and Musterman, J. L. (1994), Water Sci. Technol. 29(9), 79–88.

    CAS  Google Scholar 

  4. 4

    Eckenfelder, W. W. and Musterman, J. L. (1994), Water Sci. Technol. 29(9), 79–88.

    CAS  Google Scholar 

  5. 4

    Liu, S. and Suflita, J. M. (1993), Trends Biotechnol. 11, 344–352.

    PubMed  CAS  Google Scholar 

  6. 5

    Bragg, J. R., Prince, R. C., Harner, K. J., and Altas, R. M. (1994), Nature 368, 413–418.

    ADS  CAS  Google Scholar 

  7. 6

    Swannell, R. P. J., Lee, K., and McDonagh, M. (1996), Microbiol. Rev. 60, 342–365.

    PubMed  CAS  Google Scholar 

  8. 7

    Ottengraf, S. P. P., van den Oever, A. H. C., and Kempenaars, F. J. C. M. (1984), In: Innovations in Biotechnology. Houwink, E. H. and van der Meer R. R., eds., Elsevier, Amsterdam, pp. 157–167.

    Google Scholar 

  9. 8

    Ottengraf, S. P. P., Meesters, J. J. P., van den Oever, A. H. C., and Rozema, H. R. (1986), Bioproc. Eng. 1, 61–69.

    Google Scholar 

  10. 9

    Button, D. K., Schut, F., Quang, P., Martin, R. M., and Robertson, B. (1993), Environ, Microbiol. 59, 881–891.

    CAS  Google Scholar 

  11. 10

    Watanabe, K. and Baker, P. W. (2000), J. Biosci. Bioeng. 89, 1–11.

    PubMed  CAS  Google Scholar 

  12. 11

    Zilli, M. and Converti, A. (1999), In: The Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Flickinger, M. C. and Drew, S. W., eds., Wiley, New York, pp. 305–319.

    Google Scholar 

  13. 12

    Kim, J. H., Oh, K. K., Lee, S. T., and Kim, S. W. (2002), Proc. Biochem. 37, 1367–1373.

    CAS  Google Scholar 

  14. 13

    Zilli, M., Del Borghi, A., and Converti, A. (2000), Appl. Microbiol. Biotechnol. 54, 248–254.

    PubMed  CAS  Google Scholar 

  15. 14

    Abu Hamed, T., Bayraktar, E., Mehmetoğlu, Ü., and Mehmetoğlu, T., (2004), Biochem. Eng. J. 19, 137–146.

    CAS  Google Scholar 

  16. 15

    Zilli, M., Palazzi, E., Sene, L., Converti, A., and Del Borghi, M. (2001), Proc. Biochem. 37, 423–429.

    CAS  Google Scholar 

  17. 16

    Sene, L., Converti, A., Felipe, M. G. A., and Zilli, M. (2002), Biores. Technol. 83, 153–157.

    CAS  Google Scholar 

  18. 17

    Moharikar, A. and Purohit, H. (2003), Int. Biodeter. Biodegr. 52, 255–260.

    CAS  Google Scholar 

  19. 18

    Vinod, A. V. and Reddy, G. V. (2005), Biochem. Eng. J. 24, 1–10.

    Google Scholar 

  20. 19

    Monteiro, Á. A. M. G., Boaventura, R. A. R., and Rodrigues, A. E. (2000), Biochem. Eng. J. 6, 45–49.

    CAS  Google Scholar 

  21. 20

    Clarke, K. L., Pugsley, T., and Hill, T. A. (2005), Chem. Eng. Sci. 60, 6909–6918.

    CAS  Google Scholar 

  22. 21

    Prokop, W. H. and Bohn, H. L. (1985), J. Air Pollut. Control Assoc. 35, 1332–1338.

    Google Scholar 

  23. 22

    Kampbell, D. H., Wilson, J. T., Read, H. W., and Stocksdale, J. (1987), J. Air Pollut. Control Assoc. 37, 1236–1240.

    CAS  Google Scholar 

  24. 23.

    Alfani, F., Cantarella, L., Gallifuoco, A., and Cantarella, M. (1990), Acqua-Aria 10, 877–884.

    Google Scholar 

  25. 24

    Jäger, B. and Jager, J. (1978), Müll und Abfall 2, 48–54.

    Google Scholar 

  26. 25

    Hartmann, H. (1977), Stuttg. Ver. Siedlungswasserwirstsch 59, 3–19.

    CAS  Google Scholar 

  27. 26

    Thistlethwayte, B., Hardwick, B., and Goleb, E. E. (1973), Chimie Ind. 106, 795–801.

    CAS  Google Scholar 

  28. 27

    Helmer, R. (1974), Ges. Ing. 94, 21–30.

    Google Scholar 

  29. 28.

    Chen, K. C., Lin, W. H., and Liu, Y. C. (2002), Enzyme Microbial Technol. 31, 490–497.

    CAS  Google Scholar 

  30. 29

    Chiangchun, Q., Hanchang, S., Yongming, Z., and Yi, Q. (2003), Proc. Biochem. 38, 1545–1551.

    Google Scholar 

  31. 30

    Tsai, H. H., Ravindran, V., and Pirbazari, M. (2005), Chem. Eng. Sci. 60, 5620–5636.

    CAS  Google Scholar 

  32. 31

    Luke, A. K. and Burton, S. G. (2001), Enzyme Microbial Technol. 29, 348–356.

    CAS  Google Scholar 

  33. 32

    Kim, D. J. and Kim, H. (2005), Proc. Biochem. 40, 2015–2020.

    CAS  Google Scholar 

  34. 33

    Zaiat, M., Cabral, A. K. A., and Foresti, E. (1996), Wat. Res. 30, 2435–2439.

    CAS  Google Scholar 

  35. 34

    Schmidell, W. and Facciotti, M. C. R. (2001), In: Biotecnologia Industrial. Schmidell, W., Lima, U. A. L., Aquarone, E., and Borzani, W., eds., Edgard Blücher, São Paulo, pp. 179–192.

    Google Scholar 

  36. 35

    Onysko, K. A., Budman, H. M., and Robinson, C. W. (2000), Biotechnol. Bioeng. 70, 291–299.

    PubMed  CAS  Google Scholar 

  37. 36

    Onysko, K. A., Robinson, C. W., and Budman, H. M. (2002). Can. J. Chem. Eng. 80, 239–252.

    CAS  Article  Google Scholar 

  38. 37

    Koch, B., Ostermann, M., Hoke, H., and Hempel, D. C. (1991), Wat. Res. 25, 1–8.

    CAS  Google Scholar 

  39. 38

    Dluhy, M., Sefcik, J., and Bales, V. (1994), Comput. Chem. Eng., 18, S725-S729.

    Google Scholar 

  40. 39

    Swanson, W. J. and Loeher, R. C. (1997), J. Environ. Eng. 123, 538–546.

    CAS  Google Scholar 

  41. 40

    Cox, H. H. J., Houtman, J. H. M., Doddema, H. J., and Harder, W. (1993), Biotechnol. Lett. 15, 737–742.

    CAS  Google Scholar 

  42. 41

    Cox, H. H. J., Houtman, J. H. M., Doddema, H. J., and Harder, W. (1993), Appl. Microbiol. Biotechnol. 39, 372–376.

    CAS  Google Scholar 

  43. 42

    Arnold, M., Reittu, A., von Wright, A., Martikainen, P. J., and Suihko, M. L. (1997), Appl. Microbiol. Biotechnol. 48, 738–744.

    PubMed  CAS  Google Scholar 

  44. 43

    Sorial, G. A., Smith, F. L., Suidan, M. T., Pandit, A., Biswas, P., and Brenner, R. C. (1998), Wat. Res. 32, 1593–1603.

    CAS  Google Scholar 

  45. 44

    Kim, D., Cai, Z. L., and Sorial, G. A. (2005), J. Air Waste Manag. Assoc. 55, 200–209.

    PubMed  CAS  Google Scholar 

  46. 45

    Togna, A. P. and Frisch, S. (1993), 86th Meeting of the Air and Waste Management Association, Denver, CO, 14–18 June 1993.

  47. 46

    Cox, H. H. J., Moerman, R. E., van Baalen, S., and van Gheiningen, W. N. M. (1997), Biotechnol. Bioeng. 53, 259–266.

    CAS  Google Scholar 

  48. 47

    Sánchez, J. L. G., Kamp, B., Onysko, K. A., Budman, H., and Robinson, C. W. (1998), Biotechnol. Bioeng. 60, 560–567.

    PubMed  Google Scholar 

  49. 48

    Kargi, F. and Eker, S. (2005), Proc. Biochem. 40, 2105–2111.

    CAS  Google Scholar 

  50. 49

    Christova, N., Tuleva, B., and Nikolova-Damyanova, B. (2004), J. Biosci. 59, 205–208.

    CAS  Google Scholar 

  51. 50

    Moran, A. C., Olivera, N., Commendatore, M., Esteves, J. L., and Sineriz, F. (2000), Biodegradation 11, 65–71.

    PubMed  CAS  Google Scholar 

  52. 51

    Feitkenhauer, H., Schnicke, S., Muller, R., and Markl, H. (2001), Appl. Microbiol. Biotechnol. 57, 744–750.

    PubMed  CAS  Google Scholar 

  53. 52

    Oldenhuis, R., Vink, R. L. J. M., Janssen, D. B., and Witholt, B. (1989), Appl. Environ. Microbiol., 55, 2819–2826.

    PubMed  CAS  Google Scholar 

  54. 53

    Oldenhuis, R., Kuijk, L., Lammers, A., Jansen, D. B., and Witholt, B. (1989), Appl. Environ. Microbiol. 30, 211–217.

    CAS  Google Scholar 

  55. 54

    Ergas, S. J., Kinney, K., Fuller, M. E., and Scow, K. M. (1994), Biotechnol. Bioeng. 44, 1048–1054.

    CAS  Google Scholar 

  56. 55

    Janssen, D. B., Grobben, G., Hoekstra, R., Oldenhuis, R., and Whitolt, B. (1988), Appl. Microbiol. Biotechnol. 29, 392–399.

    CAS  Google Scholar 

  57. 56

    Ottengraf, S. P. P. (1986), In: Biotechnology. Rehm, H. J. and Reed, G., eds., VCH, Weinheim, pp. 425–452.

    Google Scholar 

  58. 57

    van der Werf, M. J., Swarts, H. J., and de Bont, J. A. M. (1999), Appl. Environ. Microbiol. 65, 2092–2102.

    PubMed  Google Scholar 

  59. 58

    Arand, M., Hallberg, B. M., Zou, J. Y., et al. (2003), EMBO J. 22, 2583–2592.

    PubMed  CAS  Google Scholar 

  60. 59

    Sabo, F., Motz, U., and Fischer, K. (1993), 86th Meeting of the Air and Waste Management Association, Denver, CO, 14–18 June 1993.

  61. 60

    Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F., and De Bont, J. A. M. (1989), Appl. Environ. Microbiol. 55, 2850–2855.

    PubMed  CAS  Google Scholar 

  62. 61

    Dijk, J. A., Stams, A. J. M., Schraa, G., Ballerstedt, H., de Bont, J. A. M., and Gerritse, J. (2003), Appl. Microbiol. Biotech. 63, 68–74.

    CAS  Google Scholar 

  63. 62

    Jang, J. H., Hirai, M., and Shoda, M. (2004), Appl. Microb. Biotechnol. 65, 349–355.

    CAS  Google Scholar 

  64. 63

    Lim, K. H., Park, S. W., Lee, E. J., and Hong, S. H. (2005), Koream J. Chem. Eng. 22, 70–79.

    CAS  Google Scholar 

  65. 64

    Marek, J., Paca, J., Halecky, M., Koutsky, B., Sobotka, M., and Keshavarz, T. (2001), Folia Microb. 46, 205–209.

    CAS  Google Scholar 

  66. 65

    Geng, A. L., Chen, X. G., Gould, W. D., et al. (2004), Wat. Sci. Technol. 50 (4), 291–297.

    CAS  Google Scholar 

  67. 66

    Oyarzun, P., Arancibia, F., Canales, C., and Aroca, G. E. (2003), Proc. Biochem. 39, 165–170.

    CAS  Google Scholar 

  68. 67

    Warhust, A. M. and Fewson, C. A. (1994), J. Appl. Bacteriol. 77, 597–606.

    Google Scholar 

  69. 68

    Warhust, A. M. and Fewson, C. A. (1994), Crit. Rev. Biotechnol. 14, 29–73.

    Google Scholar 

  70. 69

    Warhust, A. M., Clarke, K. F., Hill, R. A., Holt, R. A., and Fewson, C. A. (1994), Appl. Environ. Microbiol. 60, 1137–1145.

    Google Scholar 

  71. 70

    ANVISA—Agência Nacioanl de Vigilância Sanitária, RDC n210, DE 04/08/2003, Regulamento Técnico das Boas Prácticas de Fabricação de Medicamentos, D.O.U.—Diário Oficial da União; Poder Executivo, Brazilia, 14 August 2003.

  72. 71

    WHO, Phenol Health and Safety Guide—Environmental Health Criteria 161: Phenol, Published by the World Health Organization for the International Programme on Chemical Safety, UNEP, ILO, WHO. http://www.inchem.org/documents/hsg/hsg/hsg88_e.thm.

  73. 72

    Haldane, J. B. S. (1965), In: Enzymes. MIT Press, Cambridge, MA, p. 84.

    Google Scholar 

  74. 73

    D'Adamo, P. D., Rozich, A. F., and Gaudy, A. F. (1984), Biotechnol. Bioeng. 26, 397–402.

    Google Scholar 

  75. 74

    Hill, A. and Robinson, C. W. (1975), Biotechnol. Bioeng. 17, 1599–1615.

    CAS  Google Scholar 

  76. 75

    Yang, R. D. and Humphrey, A. E. (1975), Biotechnol. Bioeng, 17, 1211–1235.

    PubMed  CAS  Google Scholar 

  77. 76

    Dapaah, S. Y. and Hill, G. A. (1992), Biotechnol. Bioeng. 40, 1353–1358.

    CAS  Google Scholar 

  78. 77

    Hinteregger, C., Leitner, R., Loidl, M., Ferschi, A., and Streichssbier, F. (1992), Appl. Microbiol. Biotechnol. 37, 252–259.

    PubMed  CAS  Google Scholar 

  79. 78

    Chitra, S., Sekaran, G., Padamavathi, S., and Chandrakasan, G. J. (1995), Gen. Appl. Microbiol. 41, 229–237.

    CAS  Google Scholar 

  80. 79

    Spigno, G., Zilli, M., and Nicolella, C. (2004), Biochem. Eng. J. 19, 267–275.

    CAS  Google Scholar 

  81. 80

    Hill, G. A., Milne, B. J., and Nawrocki, P. A. (1996), Appl. Microbiol. Biotechnol. 46, 163–168.

    PubMed  CAS  Google Scholar 

  82. 81

    Valenzuela, J., Bumann, U., Céspedes, R., Padilla, L., and González, B. (1997), Appl. Environ. Microbiol. 63, 227–232.

    PubMed  CAS  Google Scholar 

  83. 82

    Apajalahti, J. H. A. and Salkinoja-Salomen, M. S. (1986), Appl. Microbiol. Biotechnol. 25, 62–67.

    CAS  Google Scholar 

  84. 83

    Oh, J. S. and Han, Y. H. J. (1997), Kor. J. Appl. Microbiol. Biotechnol. 25, 459–463.

    CAS  Google Scholar 

  85. 84

    Morsen, A. and Rehm, H. J. (1987), Appl. Microbiol. Biotechnol. 26, 283–288.

    Google Scholar 

  86. 85

    Kim, J. H., Oh, K. K., Lee, S. T., and Kim, S. W. (2002), Proc. Biochem. 37, 1367–1373.

    CAS  Google Scholar 

  87. 86

    Dupasquier, D., Revaii, S., and Auria, R. (2002), Environ. Sci. Technol. 36, 247–253.

    PubMed  CAS  Google Scholar 

  88. 87

    Oh, H. M., Ku, Y. H., Ahn, K. H., Jang, K. Y., Kho, Y. H., and Kwon, G. S. (1995), Korean J. Appl. Microbiol. Technol. 23, 755–762.

    Google Scholar 

  89. 88

    Weisel, I., Wubker, S. M. and Rehm, H. J. (1993), Appl. Microbiol. Biotechnol. 39, 110–116.

    Google Scholar 

  90. 89

    Andretta, C. W. S., Rosa, R. M., Tondo, E. C., Gaylarde, C. C., and Henriques, J. A. P. (2004), Chemosphere 55, 631–639.

    PubMed  CAS  Google Scholar 

  91. 90

    González, G., Herrera, G., García, M. T., and Peña, M. (2001), Biores. Technol. 76, 245–251.

    Google Scholar 

  92. 91

    Holladay, D. W., Hancher, C. W., Scott, C. D., and Chilcote, D. D. (1978), J. Wat. Pollut. Control Fed. 50, 2573–2588.

    CAS  Google Scholar 

  93. 92

    Beg, S. A. and Hassan, M. M. (1985), Chem. Eng. J. 30, 1–8.

    Google Scholar 

  94. 93

    González, G. and Herrera, G. (1995), Acta Microbiol. Polonica 44, 285–296.

    Google Scholar 

  95. 94

    Zilli, M., Converti, A., Lodi, A., Del Borghi, M., and Ferraiolo, G. (1993), Biotechnol. Bioeng. 41, 693–699.

    CAS  Google Scholar 

  96. 95

    Mpanias, C. J. and Baltzis, B. C. (1998), Biotechnol. Bioeng. 59, 328–343.

    PubMed  CAS  Google Scholar 

  97. 96

    Morales, M., Revah, S., and Auria, R. (1998), Biotechnol. Bioeng. 60, 483–491.

    PubMed  CAS  Google Scholar 

  98. 97

    Acuña, M. E., Pérez, F., Auria, R., and Revah, S. (1999), Biotechnol. Bioeng. 63, 175–184.

    PubMed  Google Scholar 

  99. 98

    Ahimou, F., Jacques, P., and Deleu, M. (2000), Enzyme Microbial Technol. 27, 749–754.

    CAS  Google Scholar 

  100. 99

    Deleu, M. and Paquot, M. (2004) C. R. Chimie 7, 641–646.

    CAS  Google Scholar 

  101. 100

    Desai, J. D. and Banat, I. M. (1997), Microbiol. Mol. Biol. Rev. 61, 47–64.

    PubMed  CAS  Google Scholar 

  102. 101

    Banat, I. M. (1994), Biores. Technol. 51, 1–12.

    Google Scholar 

  103. 102

    Cooper, D. G. (1986), Microbiol. Sci. 3, 145–149.

    PubMed  CAS  Google Scholar 

  104. 103

    Rosenberg, E. (1986), Crit. Rev. Biotechnol. 3, 109–132.

    CAS  Article  Google Scholar 

  105. 104

    Haferburg, D., Hommel, R., Claus, R., and Kleber, H. P. (1986), Adv. Biochem. Eng. Biotechnol. 33, 53–93.

    CAS  Google Scholar 

  106. 105

    Noah, K. S., Fox, S. L., Bruhn, D. F., Thompson, D. N., and Bala, G. A. (2002), Appl. Biochem. Biotechnol. 98, 803–813.

    PubMed  Google Scholar 

  107. 106

    Cameotra, S. S., Hommel, R., Claus, R., and Kleber, H. P. (2004), Curr. Opin. Microbiol. 7, 262–266.

    PubMed  CAS  Google Scholar 

  108. 107

    Banat, I. M., Makkar, R. S., and Cameotra, S. S. (2000), Appl. Microbiol. Biotechnol. 53, 495–508.

    PubMed  CAS  Google Scholar 

  109. 108

    Cameotra, S. S. and Makkar, R. S. (1998), Appl. Microbiol. Biotechnol. 50, 520–529.

    PubMed  CAS  Google Scholar 

  110. 109

    Reis, F. A. S. L., Servulo, F. C., and de França, F. P. (2004) Appl. Biochem. Biotechnol. 113–116, 899–912.

    PubMed  Google Scholar 

  111. 110

    Peypoux, F., Bonmatin, J. M., and Wallach, J. (1999), Appl. Microbiol. Biotechnol. 51, 553–563.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Attilio Converti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Das Neves, L.C.M., Miyamura, T.T.M.O., Moraes, D.A. et al. Biofiltration methods for the removal of phenolic residues. Appl Biochem Biotechnol 129, 130–152 (2006). https://doi.org/10.1385/ABAB:129:1:130

Download citation

Index Entries

  • Biofiltration
  • phenolic residues
  • bioremediation