Comparison of bacterial and phage display peptide libraries in search of target-binding motif

Abstract

Genetic engineering allows modification of bacterial and bacteriophage genes, which code for surface proteins, enabling display of random peptides on the surface of these microbial vectors. Biologic peptide libraries thus formed are used for high-throughput screening of clones bearing peptides with high affinity for target proteins. There are reports of many successful affinity selections performed with phage display libraries and substantially fewer cases describing the use of bacterial display systems. In theory, bacterial display has some advantages over phage display, but the two systems have never been experimentally compared. We tested both techniques in selecting streptavidin-binding peptides from two commercially available libraries. Under similar conditions, selection of phage-displayed peptides to model protein streptavidin proved convincingly better.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Scott, J. K. and Smith, G. P. (1990), Science 249, 386–390.

    PubMed  Article  ADS  CAS  Google Scholar 

  2. 2.

    Lu, Z., Murray, K. S., Van Cleave, V., La Vallie, E. R., Stahl, M. L., and McCoy, J. M. (1995), Biotechnology 13(4), 366–372.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Smith, G. P. and Petrenko, V. A. (1997), Chem. Rev. 97, 391–410.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Dedova, O., Fletcher, P., Liu, H., Wang, P., Blume, A., Brissette, R., Hsiao, K., Lennick, M., Pillutla, R., and Goldstein, N. (2004), Patent no. US2004023887.

  5. 5.

    McConnell, S. J. and Spinella, D. G. (1999), Patent no. WO9947151.

  6. 6.

    Hyde-DeRuyscher, R., Paige, L. A., Christensen, D. J., et al. (2000), Chem. Biol. 7 (1), 17–25.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Kay, B. K. and Hamilton, P. T. (2001), Comb. Chem. High Through. Screen. 4, 535–543.

    CAS  Google Scholar 

  8. 8.

    Markland, W., Roberts, B. L., and Ladner, R. C. (1996), in Methods in Enzymology, vol. 267, Abelson, J. N. ed., Academic, New York, pp. 28–51.

    Google Scholar 

  9. 9.

    Lunder, M., Bratkovič, T., Kreft, S., and Ŝtrukelj, B. (2005), J. Lipid Res. 46, 1512–1516.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Bratkovič, T., Lunder, M., Popovič, T., Kreft, S., Turk, B., Štrukelj, B., and Urleb, U. (2005), Biochem. Biophys. Res. Commun. 332, 897–903.

    PubMed  Article  Google Scholar 

  11. 11.

    Sparks, A. B., Adey, N. B., Cwirla, S., and Kay, B. K. (1996), in Phage Display of Peptides and Proteins: A Laboratory Manual, Kay, B. K., Winter, J., and McCafferty, J., eds., Academic, San Diego, pp. 227–253.

    Google Scholar 

  12. 12.

    Kay, B. K., Kasanov, J., and Yamabhai, M. (2001), Methods 24, 240–246.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Smith, G. P. and Scott, J. K. (1993), in Methods in Enzymology, vol. 217, Wu, R., ed., Academic, New York, pp. 228–257.

    Google Scholar 

  14. 14.

    Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J. (1990), Proc. Natl. Acad. Sci. USA 87, 6378–6382.

    PubMed  Article  ADS  CAS  Google Scholar 

  15. 15.

    van Zonnenveld, A. J., van den Berg, B. M. M., van Meijer, M., and Pannekoek, H. (1995), Gene 167, 49–52.

    Article  Google Scholar 

  16. 16.

    Yu, H., Dong, X., and Sun Y. (2004), Biochem. Eng. J. 18, 169–175.

    Article  Google Scholar 

  17. 17.

    Brown, C. K., Modzelewski, R. A., Johnson, C. S., and Wong, M. K. K. (2000), Ann. Surg. Oncol. 7(10), 743–749.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Lu, Z., Tripp, B. C., and McCoy, J. M. (1998), Methods Mol. Biol. 87, 265–280.

    PubMed  CAS  Google Scholar 

  19. 19.

    Brown, S. (1997), nat. Biotechnol. 15(3), 269–272.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Tripp, B. C., Lu, Z., Bourque, K., Sookdeo, H., and McCoy, J. M. (2001), Protein Eng. 14(5), 367–377.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Khan, A. S., Thompson R., Cao, C., and Valdes, J. J. (2003), Biotechnol. Lett., 25(19), 1671–1675.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Hansson, M., Samuelson, P., Gunneriusson, E., and Stahl, S. (2001), Comb. Chem. High Through. Screen. 4(2), 171–184.

    CAS  Google Scholar 

  23. 23.

    Zitzmann, S., Kramer, S., Mier, W., Mahmut, M., Fleig, J., Atmann, A., Eisenhut, M., and Haberkorn, U. (2005), J. Nucl. Med. 46(5), 782–785.

    PubMed  CAS  Google Scholar 

  24. 24.

    Giebel, L. B., Cass, R. T., Milligan, D. L., Young, D. C., Arze, R., and Johnson, C. R. (1995), Biochemistry 34(47), 15,430–15,435.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mojca Lunder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lunder, M., Bratkovič, T., Doljak, B. et al. Comparison of bacterial and phage display peptide libraries in search of target-binding motif. Appl Biochem Biotechnol 127, 125–131 (2005). https://doi.org/10.1385/ABAB:127:2:125

Download citation

Index Entries

  • Phage display library
  • bacterial display library
  • affinity selection
  • ligand
  • peptide
  • streptavidin