Skip to main content
Log in

Development of a method to quantify gene expression levels for glycosylation pathway genes in Chinese hamster ovary cell cultures

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Changes in protein glycosylation owing to changes in environmental conditions are not well understood. To better understand these relationships, methods to quantify controlling factors are needed. Because enzymes are translated from genes, the ability to quantify gene expression levels for glycosylation-related enzymes would be advantageous. We developed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assays to monitor gene expression in Chinese hamster ovary (CHO) cells for five terminal glycosylation genes. The five enzymes were sialidase, a putative α2,3-sialyltransferase, β1,4-galactosyltransferase, cytosine monophosphate-sialic acid transporter, and uracil diphosphate-galactosyl transporter. Four of these CHO cell genes were publicly available from GenBank; however, the α2,3-sialyltransferase gene for Cricetulus griseus (CHO cell species) was not available and, therefore, was sequenced as a part of this work. The qRT-PCR primers and probes (based on the TaqManTM chemistry) were designed and validated for these five genes. The gene expression profiles were obtained for CHO cells producing the recombinant interleukin-4/13 cytokine trap molecule in batch reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hooker, A. D., Goldman, M. H., Markham, N. H., et al. (1995), Biotechnol. Bioeng. 48, 639–648.

    Article  CAS  Google Scholar 

  2. Hayter, P. M., Curling, E. M., Gould, M. L., et al. (1993), Biotechnol. Bioeng. 42, 1077–1085.

    Article  CAS  Google Scholar 

  3. Hu, W. S., Zhou, W. C., and Europa, L. F. (1998), J. Microbiol. Biotechnol. 8, 8–13.

    Google Scholar 

  4. Kotani, N., Asano, M., Iwakura, Y., and Takasaki, S. (2001), Biochem. J. 357, 827–834.

    Article  CAS  Google Scholar 

  5. Hinton, D. A., Evans, S. C., and Shur, B. D. (1995), Exp. Cell. Res. 219, 640–649.

    Article  CAS  Google Scholar 

  6. Rajput, B., Shaper, N. L., and Shaper, J. H. (1996), J. Biol. Chem. 271, 5131–5142.

    Article  CAS  Google Scholar 

  7. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., et al. (2001), Biochimie 83, 727–737.

    Article  CAS  Google Scholar 

  8. Masibay, A. S., Damewood, G. P., Boeggeman, E., and Qasba, P. K. (1991), Biochim. Biophys. Acta 1090, 230–234.

    CAS  Google Scholar 

  9. Wen, D. X., Svensson, E. C., and Paulson, J. C. (1992), J. Biol. Chem. 267, 2512–2518.

    CAS  Google Scholar 

  10. Baum, L. G., Derbin, K., Perillo, N. L., et al. (1996), J. Biol. Chem. 271, 10,793–10,799.

    CAS  Google Scholar 

  11. Taniguchi, A. and Matsumoto, K. (1999), Biochem. Biophys. Res. Commun. 257, 516–522.

    Article  CAS  Google Scholar 

  12. Chung, M. I., Lim, M. H., Lee, Y. J., et al. (2003), J. Microbiol. Biotechnol. 13, 217–224.

    Article  CAS  Google Scholar 

  13. Grahn, A. and Larson, G. (2001), Glycoconjugate J. 18, 759–767.

    Article  CAS  Google Scholar 

  14. Wang, H., Tachibana, K., Zhang, Y., et al. (2003), Biochem. Biophys. Res. Commun. 300, 738–744.

    Article  CAS  Google Scholar 

  15. Ferrari, J., Gunson, J., Lofgren, J., Krummen, J., and Warner, T. G. (1998), Biotechnol. Bioeng. 60, 589–595.

    Article  CAS  Google Scholar 

  16. Wang, M. D., Yang, M., Huzel, N., and Butler, M. (2002), Biotechnol. Bioeng 77, 194–203.

    Article  CAS  Google Scholar 

  17. Puig-Kroger, A., Sanz-Rodriguez, F., Longo, N., et al. (2000), J. Immunol. 165, 4338–4345.

    CAS  Google Scholar 

  18. Klein, J. M. and McCarthy, T. A. (2002), Pediatr. Res. 51, 62A.

    Google Scholar 

  19. Yang, M. and Butler, M. (2000), Cytotechnology 34, 83–99.

    Article  CAS  Google Scholar 

  20. Sears, H. J., Sawers, G., Berks, B. C., Ferguson, S. J., and Richardson, D. J. (2000), Microbiology 146, 2977–2985.

    CAS  Google Scholar 

  21. Yang, M. and Butler, M. (2002), Biotechnol. Prog. 18, 129–138.

    Article  CAS  Google Scholar 

  22. Jeong, Y., Jinwoo, K., Suhyun, K., et al. (2003), Plant Dis. 87, 890–895.

    CAS  Google Scholar 

  23. Lunge, V. R., Miller, B. J., Livak, K. J., and Batt, C. A. (2002), J. Microbiol. Methods 51, 361–368.

    Article  CAS  Google Scholar 

  24. Puig, S. and Perez-Ortin, J. E. (2000), Syst. Appl. Microbiol. 23, 300–303.

    CAS  Google Scholar 

  25. Steinbach, D., Lengemann, J., Voight, A., et al. (2003), Clin. Cancer Res. 9, 1083–1086.

    CAS  Google Scholar 

  26. Proudnikov, D., Yuferov, V., Laforge, K. S., Ho, A., and Kreek, M. J. (2003), Mol. Brain Res. 112, 182–185.

    Article  CAS  Google Scholar 

  27. Proudnikov, D., Yuferov, V., Zhou, Y., et al. (2003), J. Neurosci. Methods 123, 31–45.

    Article  CAS  Google Scholar 

  28. Berg, W., Gutschkergdaniec, G., and Schauer, R. (1985), Anal. Biochem. 145, 339–342.

    Article  CAS  Google Scholar 

  29. Warner, T. G., Chang, J., Ferrai, J., et al. (1993), Glycobiology 3, 455–463.

    Article  CAS  Google Scholar 

  30. Gramer, M. J., Goochee, C., Chock, V. Y., Brousseau, D. T., and Sllwkowski, M. B. (1995), Biotechnology 13, 692–698.

    Article  CAS  Google Scholar 

  31. Ferrari, J., Harris, R., and Warner, T. G. (1994), Glycobiology 4, 367–373.

    Article  CAS  Google Scholar 

  32. Anumula, K. R. (1997), in Techniques in Glycobiology, Townsend, R. R., Arland, J., and Hotchkiss, T., eds., Marcel Dekker, New York, pp. 349–357.

    Google Scholar 

  33. Gawlitzek, M., Ryll, T., Lofgren, J., and Sliwkowski, M. B. (2000), Biotechnol. Bioeng. 68, 637–646.

    Article  CAS  Google Scholar 

  34. Suzuki T., Higgins, P., and Crawford, D. (2000), Bio Techniques 29, 332–337.

    CAS  Google Scholar 

  35. Freeman, W. M., Walker, S. J., and Vrana, K. E. (1999), BioTechniques 26, 112–125.

    CAS  Google Scholar 

  36. Mackay, I. M. (2004), Clin. Microbiol. Infect. 10, 190–212.

    Article  CAS  Google Scholar 

  37. Livak, K. J. and Schmittgen, T. D. (2001), Methods 25, 402–408.

    Article  CAS  Google Scholar 

  38. Gramer, M. J. and Goochee, C. F. (1993), Biotechnol. Prog. 9, 366–373.

    Article  CAS  Google Scholar 

  39. Munzert, E., Muthing, J., Buntemeyer, H., and Lehmann, J. (1996), Biotechnol. Prog. 12, 559–563.

    Article  CAS  Google Scholar 

  40. Goochee, C. F. and Gramer, M. J. (1994), Biotechnol. Bioeng. 43, 423–428.

    Article  Google Scholar 

  41. Goochee, C. F., Gramer, M. J., Schaffer, D. V., and Sliwkowski, M. B. (1994), J. Cell. Biochem. (S18D), 263.

    Google Scholar 

  42. Hasegawa, T., Carnero, C. F., Wada, T., Itoyama, Y., and Miyagi, T. (2001), Biochem. Biophys. Res. Commun. 280, 726–732.

    Article  CAS  Google Scholar 

  43. Sasaki, K., Watanabe, E., Kawashima, K., et al. (1993), J. Biol. Chem. 268, 22,782–22,787.

    CAS  Google Scholar 

  44. Kono, M., Ohyama, Y., Lee, Y. C., et al. (1997), Glycobiology 7, 469–479.

    Article  CAS  Google Scholar 

  45. Kitagawa, H. and Paulson, J. C. (1994), J. Biol. Chem. 269, 17,872–17,878.

    CAS  Google Scholar 

  46. Endo, T., Koizumi, S., Tabata, K., and Ozaki, A. (2000), Appl. Microbiol. Biotechnol. 53, 257–261.

    Article  CAS  Google Scholar 

  47. Taniguchi, A., Morishima, T., Tsujita, Y., Matsumoto, Y., and Matsumoto, K. (2003), Biochem. Biophys. Res. Commun. 300, 570–576.

    Article  CAS  Google Scholar 

  48. Hirooka, T., Suganuma, N., Furuhashi, M., et al. (1996), Endocr. J. 43, 423–428.

    Article  CAS  Google Scholar 

  49. Paulson, J. C., Colley, K., Lee, E. U., and Roth, J. (1988), Glycoconjugate J. 5, 330.

    Google Scholar 

  50. Taniguchi, A., Hioki, M., and Matsumoto, K. (2003), Biochem. Biophys. Res. Commun. 301, 764–768.

    Article  CAS  Google Scholar 

  51. Eckhardt, M., Muhlenhoff, V., Bethe, A., and Gerardyschahn, R. (1996), Proc. Natl. Acad. Sci. USA 93, 7572–7576.

    Article  CAS  Google Scholar 

  52. Eckhardt, M., Gotza, B., and Gerardy-Schahn R. (1999), J. Biol. Chem. 274, 8779–8787.

    Article  CAS  Google Scholar 

  53. Bill, R. M., Revers, L., and Wilson, I. B. H. (1998), Protein Glycosylation, Kluwer Academic, Boston.

    Google Scholar 

  54. Berninsone, P. M. and Hirschberg, C. B. (2000), Curr. Opin. Struct. Biol. 10, 542–547.

    Article  CAS  Google Scholar 

  55. Kumamoto, K., Goto, Y., Sekikawa, K., et al. (2001), Cancer Res. 61, 4620–4627.

    CAS  Google Scholar 

  56. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M. A., et al. (2000), Biochem. J. 352, 37–48.

    Article  CAS  Google Scholar 

  57. Lee, J. H., Sundaram, S., Shaper, N. L., Raju, T. S., and Stanley, P. (2001), J. Biol. Chem. 276, 13,924–13,934.

    CAS  Google Scholar 

  58. Gasteiger, E., Gattiker, A., Hoogland, C., et al. (2003), Nucleic Acids Res. 31, 3784–3788.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah W. Harcum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, K.J.R., Harcum, S.W., Griffiths, J. et al. Development of a method to quantify gene expression levels for glycosylation pathway genes in Chinese hamster ovary cell cultures. Appl Biochem Biotechnol 125, 159–173 (2005). https://doi.org/10.1385/ABAB:125:3:159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:125:3:159

Index Entries

Navigation