Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content

Abstract

Pretreatment of Douglas-fir by steam explosion produces a substrate containing approx 43% lignin. Two strategies were investigated for reducing the effect of this residual lignin on enzymatic hydrolysis of cellulose: mild alkali extraction and protein addition. Extraction with cold 1% NaOH reduced the lignin content by only approx 7%, but cellulose to glucose conversion was enhanced by about 30%. Before alkali extraction, addition of exogenous protein resulted in a significant improvement in cellulose hydrolysis, but this protein effect was substantially diminished after alkali treatment. Lignin appears to reduce cellulose hydrolysis by two distinct mechanisms: by forming a physical barrier that prevents enzyme access and by non-productively binding cellulolytic enzymes. Cold alkali appears to selectively remove a fraction of lignin from steam-exploded Douglas-fir with high affinity for protein. Corresponding data for mixed softwood pretreated by organosolv extraction indicates that the relative importance of the two mechanisms by which residual lignin affects hydrolysis is different according to the pre- and post-treatment method used.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Galbe, M. and Zacchi, G. (2002), Appl. Microbiol. Biotechnol. 59, 618–628.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Wu, M. M., Chang, K., Gregg, D. J., Boussaid, A., Beatson, R. P., and Saddler, J. N. (1999), Appl. Biochem. Biotechnol. 77–79, 47–54.

    Article  Google Scholar 

  3. 3.

    BW McCloy & Associates, I. (2003), Estimated production, consumption and surplus mill residues in British Columbia, a 2003 update. Prepared for Natural Resources Canada.

  4. 4.

    Clark, T. A. and Mackie, K. L. (1987), J. Wood Chem. Technol. 7, 373–403.

    CAS  Google Scholar 

  5. 5.

    Ramos, L. P., Breuil, C., and Saddler, J. N. (1992), Appl. Biochem. Biotechnol. 34–35, 37–48.

    Google Scholar 

  6. 6.

    Tengborg, C., Stenberg, K., Galbe, M., et al. (1998), Appl. Biochem. Biotechnol. 70–72, 3–15.

    Google Scholar 

  7. 7.

    Boussaid, A., Esteghlalian, A. R., Gregg, D. J., Lee, K. H. and Saddler, J. N. (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.

    PubMed  Article  Google Scholar 

  8. 8.

    Yang, B., Boussaid, A., Mansfield, S. D., Gregg, D. J., and Saddler, J. N. (2002), Biotechnol. Bioeng. 77, 678–684.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Pan, X. J., Zhang, X., Gregg, D. J., and Saddler, J. N. (2004), Appl. Biochem. Biotechnol. 113–116, 1103–1114.

    PubMed  Article  Google Scholar 

  10. 10.

    Pan, X. J., Arato, C., Gilkes, N. R., et al. (2004), Biotechnol. Bioeng. in press.

  11. 11.

    Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    CAS  Google Scholar 

  12. 12.

    Wood, T. M. and Bhat, M. (1988), in Methods in Enzymology, Vol. 160, Biomass (Part A, Cellulose and Hemicellulose) (Colowick, S.P. and Kaplan, N.O., eds.). Academic Press, Inc., New York, pp. 87–112.

    Google Scholar 

  13. 13.

    Dence, C. W. (1992), in Methods in Lignin Chemistry, Lin, S. Y. and Dence, C. W., eds., Springer-Verlag, Berlin, pp. 33–61.

    Google Scholar 

  14. 14.

    Lai, Y.-Z. (1992), In: Methods in Lignin Chemistry, Lin, S. Y. and Dence, C. W., eds., Springer-Verlag, Berlin, pp. 423–434.

    Google Scholar 

  15. 15.

    Montane, D., Farriol, X., Salvado, J., Jollez, P., and Chornet, E. (1998), J. Wood Chem. Technol. 18, 171–191.

    CAS  Article  Google Scholar 

  16. 16.

    Montane, D., Salvado, J., and Farriol, X. (1997), Holzforschung 51, 135–141.

    CAS  Article  Google Scholar 

  17. 17.

    Zimbardi, F., Viggiano, D., Nanna, F., Demichele, M., Cuna, D., and Cardinale, G. (1999), Appl. Biochem. Biotechnol. 77–79, 117–125.

    Article  Google Scholar 

  18. 18.

    Shevchenko, S. M., Beatson, R. P., and Saddler, J. N. (1999), Appl. Biochem. Biotechnol. 77–79, 867–876.

    PubMed  Article  Google Scholar 

  19. 19.

    Sewalt, V. J. H., Glasser, W. G., and Beauchemin, K. A. (1997), J. Agricul. Food Chem. 45, 1823–1828.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neil Gilkes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, X., Xie, D., Gilkes, N. et al. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124, 1069 (2005). https://doi.org/10.1385/ABAB:124:1-3:1069

Download citation

Index Entries

  • Softwood
  • bioconversion
  • pretreatment
  • steam explosion
  • lignin
  • cellulose
  • hydrolysis