Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 529–540 | Cite as

Lactic acid production from cheese whey by immobilized bacteria

  • Abolghasem ShahbaziEmail author
  • Michele R. Mims
  • Yebo Li
  • Vestal Shirley
  • Salam A. Ibrahim
  • Antrison Morris


The performance of immobilized Bifidobacterium longum in sodium alginate beads and on a spiral-sheet bioreactor for the production of lactic acid from cheese whey was evaluated. Lactose utilization and lactic acid yield of B. longum were compared with those of Lactobacillus helveticus. B. longum immobilized in sodium alginate beads showed better performance in lactose utilization and lactic acid yield than L. helveticus. In the spiral-sheet bioreactor, a lactose conversion ratio of 79% and lactic acid yield of 0.84 g of lactic acid/g of lactose utilized were obtained during the first run with the immobilized L. helveticus. A lactose conversion ratio of 69% and lactic acid yield of 0.51 g of lactic acid/g of lactose utilized were obtained during the first run with immobilized B. longum in the spiral-sheet bioreactor. In producing lactic acid L. helveticus performed better when using the Spiral Sheet Bioreactor and B. longum showed better performance with gel bead immobilization. Because B. longum is a very promising new bacterium for lactic acid production from cheese whey, its optimum fermentation conditions such as pH and metabolic pathway need to be studied further. The ultrafiltration tests have shown that 94% of the cell and cheese whey proteins were retained by membranes with a mol wt cutoff of 5 and 20 KDa.

Index Entries

Cheese whey bifidobacteria immobilized cell lactose lactic acid membrane fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siso, M. I. G. (1996), Bioresour. Technol. 57, 1–11.CrossRefGoogle Scholar
  2. 2.
    Shahbazi, A., Salameh, M., and Ibrahim, A., (2005), Milchwissenschaft. 60, in press.Google Scholar
  3. 3.
    Tango, M. S. A. and Ghaly, A. E. (2002), Appl. Microbiol. Biotechnol. 58, 712–720.PubMedCrossRefGoogle Scholar
  4. 4.
    Roy, D., Goulet, J., and LeDuy, A. (1986), Appl. Microbiol. Biotechnol. 24, 206–213.CrossRefGoogle Scholar
  5. 5.
    Bruno-Barcena, J. M., Ragout, A. L., Cordoba, P. R., and Sineriz, F. (1999), Appl. Microbiol. Biotechnol. 51, 316–324.PubMedCrossRefGoogle Scholar
  6. 6.
    Roukas, T. and Kotzekidou, P. (1998), Enzyme Microbiol. Technol. 22, 199–204.CrossRefGoogle Scholar
  7. 7.
    Gomes, A. M. P. and Malcata, F. X. (1999), Trends Food Sci. Technol. 10, 139–157.CrossRefGoogle Scholar
  8. 8.
    Doleyres, Y., Paquin, C., LeRoy, M., and Lacroix, C. (2002), Appl. Microbiol. Biotechnol. 60, 168–173.PubMedCrossRefGoogle Scholar
  9. 9.
    Song, S. H., Kim, T. B., Oh, H. I., and Oh, D. K. (2003), World J. Microbiol. Biotechnol. 19, 721–731.CrossRefGoogle Scholar
  10. 10.
    Senthuran, A., Senthuran, V., Mattiasson, B., and Kaul, R. (1996), Biotechnol. Bioeng. 55(6), 841–853.CrossRefGoogle Scholar
  11. 11.
    Mostafa, N. A. (1995), Energy Convers. Mgmt. 37(3), 253–260.CrossRefGoogle Scholar
  12. 12.
    Senthuran, A., Senthuran, V., Hatti-Kaul, R., and Mattiasson, B. (1999), J. Biotechnol. 73, 61–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Guoqiang, D., Kaul, R., and Mattiasson, B. (1992), Appl. Microbiol. Biotechnol. 36, 309–314.Google Scholar
  14. 14.
    Corton, E., Piuri, M., Battaglini, F and Ruzal, S. M. (2000), Biotechnol. Prog. 16(1), 59–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Persson, A., Jonsson, A., and Zacchi, G. (2001), Biotechnol. Bioeng. 72(3), 269–277.PubMedCrossRefGoogle Scholar
  16. 16.
    Mehaia, M. A. and Cheryan, M. (1986), Enzyme Microbiol. Technol. 8, 289–292.CrossRefGoogle Scholar
  17. 17.
    Jeantet, R., Maubois, J. L., and Boyaval, P. (1996), Enzyme Microbiol. Technol. 19, 614–619.CrossRefGoogle Scholar
  18. 18.
    Hjorleifsdottir, S., Holst, O., and Mattiasson, B. (1991), Bioprocess. Eng. 6, 29–34.CrossRefGoogle Scholar
  19. 19.
    Foss Tecator. (1999). Application Note. The Determination of Nitrogen According to Kjeldahl using Block Digestion and Steam Distillation. 2400/24600 Kjctcc® Auto Sampler System User Manual 10009165. Revl.l.Google Scholar
  20. 20.
    AOAC. (1995), Official Methods of Analysis of AOAC International, 17th ed. S587.A3: AOAC Official Method 991. 22. Arlington, VA: AOAC International.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Abolghasem Shahbazi
    • 1
    Email author
  • Michele R. Mims
    • 1
  • Yebo Li
    • 1
  • Vestal Shirley
    • 1
  • Salam A. Ibrahim
    • 2
  • Antrison Morris
    • 2
  1. 1.Department of Natural Resources and Environmental DesignBioenvironmental Engineering ProgramUSA
  2. 2.Food and Nutritional Sciences Program, Department of Human Environment and Family SciencesNorth Carolina A&T State UniversityGreensboro

Personalised recommendations