Applied Biochemistry and Biotechnology

, Volume 121, Issue 1–3, pp 21–46

Effect of additions on ensiling and microbial community of senesced wheat straw

  • David N. Thompson
  • Joni M. Barnes
  • Tracy P. Houghton
Article

Abstract

Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarum and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.

Index Entries

Wheat straw lignocellulose biorefinery feedstock silage ensiling wet storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur D. Little, Inc. (2001), Final Report, United States Department of Energy, Reference No. 71038, Arthur D. Little, Inc., Cambridge, MA, http://www.adltechnology.com.Google Scholar
  2. 2.
    Energy Information Administration. (1996), DOE/EIA-0383(96), United States Department of Energy, Washington, DC.Google Scholar
  3. 3.
    Sheehan, J. and Himmel, M. (1999), Biotechnol. Prog. 15(3), 817–827.CrossRefGoogle Scholar
  4. 4.
    Office of Industrial Technologies. (1999), DOE/GO-10099-706, United States Department of Energy, Washington, DC.Google Scholar
  5. 5.
    Office of the Biomass Program. (2003), DOE/NE-ID-11129, United States Department of Energy, Washington, DC.Google Scholar
  6. 6.
    Kocsis, K. (1987), in Biomass Energy: From Harvest to Storage. Ferrero, G. L., Grassi, G., and Williams, H. E., eds., Elsevier Applied Science, London, UK, pp. 144–156.Google Scholar
  7. 7.
    Sokhansanj, S., Cushman, J., and Wright, L. (2003), Agric. Eng. Int. CIGR J. Sci. Res. Dev., vol. 5 (on-line), http://cigr-ejournal.tamu.edu.Google Scholar
  8. 8.
    Atchison, J. E. and Hettenhaus, J. R. (2003), Subcontract No. ACO-1-31042-01, NREL, Golden, CO.Google Scholar
  9. 9.
    Gray, B. F., Griffiths, J. F., and Hasko, S. M. (1984), J. Chem. Technol. Biotechnol. 34A, 453–463.Google Scholar
  10. 10.
    Shinners, K. J., Binversie, B. N., and Savoie, P. (2003), Paper 036088 in Proceedings of the 2003 ASAE Annual Meeting, ASAE, St. Joseph, MI.Google Scholar
  11. 11.
    Wilkinson, J. M., Bolsen, K. K., and Lin, C. J. (2003), in Silage Science and Technology Agronomy Monograph 42, Buxton, D. R., Muck, R. E., and Harrison, J. H. eds., ASA-CSSA-SSSA, Madison, WI, pp. 1–30.Google Scholar
  12. 12.
    Woolford, M. K. (1985), in Microbiology of Fermented Foods, vol. 2, Wood, B. J. B., ed., Elsevier Applied Science, New York, pp. 85–112.Google Scholar
  13. 13.
    Rotz, C. A. and Muck, R. E. (1994), in Forage Quality, Evaluation, and Utilization, Fahey, G.C. Jr. ed., ASA-CSSA-SSSA, Madison, WI, pp. 828–868.Google Scholar
  14. 14.
    Buxton, D. R., Muck, R. E., and Harrison, J. H. (eds.). (2003), Silage Science and Technology, Agronomy Monograph 42, ASA/CSSA/SSSA, Madison, WI.Google Scholar
  15. 15.
    Ohmomo, S., Tanaka, O., Kitamoto, H. K., and Cai, Y. (2002), JARQ 36(2), 59–71.Google Scholar
  16. 16.
    Roberts, C. A. (1995), in Post-Harvest Physiology and Preservation of Forages, CSSA Special Publication 22, Moore, K. J. and Peterson, M. A., eds., CSSA-ASA, Madison, WI, pp. 21–38.Google Scholar
  17. 17.
    Buxton, D. R. and O’Kiely, P. O. (2003), in Silage Science and Technology, Agronomy Monograph No. 42, Buxton, D. R., Muck, R. E., and Harrison, J. H. eds., ASA-CSSA-SSSA, Madison, WI, pp. 199–250.Google Scholar
  18. 18.
    Muck, R. E., Moser, L. E., and Pitt, R. E. (2003), in Silage Science and Technology. Agronomy Monograph 42, Buxton, D. R., Muck, R. E., and Harrison, J. H. eds., ASA-CSSA-SSSA, Madison, WI, pp. 250–304.Google Scholar
  19. 19.
    Pahlow, G., Muck, R. E., Driehus, F., Oude Elferink, S. J. W. H., and Spoelstra, S. F. (2003), in Silage Science and Technology, Agronomy Monograph 42, Buxton, D. R., Muck, R. E., and Harrison, J. H., eds., ASA/CSSA/SSSA, Madison, WI, pp. 31–93.Google Scholar
  20. 20.
    Kung L., Jr., Stokes, M. R., and Lin, C. J. (2003), in Silage Science and Technology, Agronomy Monograph 42, Buxton, D. R., Muck, R. E., and Harrison, J. H. eds., ASA-CSSA-SSSA, Madison, WI, pp. 305–360.Google Scholar
  21. 21.
    Thompson, D. N., Lacey, J. A., and Shaw, P. G. (2003), Appl. Biochem. Biotechnol. 105–108, 205–218.CrossRefGoogle Scholar
  22. 22.
    Saeman, J. F., Bubl, J. L., and Harris, E. E. (1945), Ind. Eng. Chem. 17, 35–37.CrossRefGoogle Scholar
  23. 23.
    Thompson, D. N., Chen, H.-C., and Grethlein, H. E. (1992), Bioresour. Technol. 39, 155–163.CrossRefGoogle Scholar
  24. 24.
    United States Sugar Corporation. (2001), Molasses Composition, United States Sugar Corporation, Molasses & Liquid Feeds Division, Clewiston, FL, http://www.sugalik.com/molasses/composition.html.Google Scholar
  25. 25.
    Moon, N. J., Ely, L. O., and Sudweeks, E. M. (1985), US patent 4,528,199.Google Scholar
  26. 26.
    Moon, N. J., Ely, L. O., and Sudweeks, E. M. (1981), J. Dairy Sci. 64(5), 807–813.CrossRefGoogle Scholar
  27. 27.
    Jarvis, B. (1973), J. Appl. Bacteriol. 36(4), 723–727.Google Scholar
  28. 28.
    Weiss, W. P., Chamberlain, D. G., and Hunt, C. W. (2003), in Silage Science and Technology, Agronomy Monograph 42, Buxton, D. R., Muck, R. E., and Harrison, J. H., eds., ASA-CSSA-SSSA, Madison, WI. pp. 469–504.Google Scholar
  29. 29.
    Holzer, M., Mayrhuber, E., Danner, H., and Braun, R. (2003), Trends Biotechnol. 21(6), 282–287.CrossRefGoogle Scholar
  30. 30.
    McDonald, P., Henderson, A. R., and Heron, S. E. (1991), The Biochemistry of Silage, Chalcombe Publications, Marlo, UK.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • David N. Thompson
    • 1
  • Joni M. Barnes
    • 1
  • Tracy P. Houghton
    • 1
  1. 1.Idaho National LaboratoryIdaho Falls

Personalised recommendations