Skip to main content
Log in

Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass

  • Session 6A Biomass Pretreatment and Hydrolysis
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recent research work in-house both at Auburn University and National Renewable Energy Laboratory has demonstrated that extremely low concentrations of acid (e.g., 0.05–0.2 wt% sulfuric acid) and high temperatures (e.g., 200–230°C) are reaction conditions that can be effectively applied for hydrolysis of the cellulosic component of biomass. These conditions are far from those of the conventional dilute-acid hydrolysis processes, and the kinetic data for glucose decomposition are not currently available. We investigated the kinetics of glucose decomposition covering pH values of 1.5–2.2 and temperatures of 180–230°C using glass ampoule reactors. The primary factors controlling glucose decomposition are the reaction medium, acid concentration, and temperature. Based on the experimental data, a kinetic model was developed and the best-fit kinetic parameters were determined. However, a consistent discrepancy in the rate of glucose disappearance was found between that of the model based on pure glucose data and that observed during the actual process of lignocellulosic biomass hydrolysis. This was taken as an indication that glucose recombines with acid-soluble lignin during the hydrolysis process, and this conclusion was incorporated accordingly into the overall model of glucose decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faith, W. L. (1945), Ind. Eng. Chem. Res. 37, 1–9.

    Article  Google Scholar 

  2. Wyman, C. E. (1994), Bioresour. Technol. 50, 3–16.

    Article  CAS  Google Scholar 

  3. van Walsum, P., Allen, S. G., Laser, M. S., Spencer, M. J., Antal, M. J., and Lynd, L. R. (1996), Appl. Biochem. Biotechnol. 57/58, 157–170.

    Article  Google Scholar 

  4. Lee, Y. Y., Iyer, P., and Torget, R. W. (1999), Adv. Biochem. Eng. 65, 93–115.

    CAS  Google Scholar 

  5. Torget, R. W., Hayward, T. K., Hatzis, C., and Philippidis, G. P. (1995), in 17 th Symposium on Biotechnology for Fuels and Chemicals, Vail, Co.

  6. Gilbert, N. G., Hobbs, I. A., and Levine, J. D. (1952), Ind. Eng. Chem. 44, 1712.

    Article  CAS  Google Scholar 

  7. Harris, E. E. (1949), Adv. Carbohydr. Chem. 4, 153–188.

    Google Scholar 

  8. Saeman, J. F. (1945), Ind. Eng. Chem. Res. 37, 43–52.

    Article  CAS  Google Scholar 

  9. Conner, A. H., Wood, B. F., Hill, C. G., and Harris, J. F. (1986), in Cellulose: Structure, Modification and Hydrolysis, Young, R. A. and Rowell, R. M., eds., John Wiley and Sons, New York, NY, pp. 281–296.

    Google Scholar 

  10. Bouchard, J., Abatzoglou, N., Chornet, E., and Overend, R. P. (1989), Wood Sci. Technol. 23, 343–355.

    Article  CAS  Google Scholar 

  11. Mok, W. S., Antal, M. J., and Varhegyi, G. (1992), Ind. Eng. Chem. Res. 31, 94–100.

    Article  CAS  Google Scholar 

  12. Torget, B., Nagle, N., Hayward, T. K., and Elander, R. (1997), in 19 th Symposium on Biotechnology for Fuels and Chemicals, Colorado Springs, CO.

  13. Harris, J. F., Baker, A. J., Connor, A. H., Jeffries, T. W., Minor, J. L., Pettersen, R. C., Scott, R. C., Springer, E. L., Wegner, T. H., and Zerbe, J. L. (1985), General Technical Report FPL-45, US Department of Agriculture Forest Products Laboratory, Madison, WI.

    Google Scholar 

  14. Bobleter, O., Schwalk, W., Concin, R., and Binder, H. (1986), J. Carbohyd. Chem. 5(3), 387–399.

    CAS  Google Scholar 

  15. Popoff, T. and Theander, O. (1976), Acta Chem. Stand. 30, 397–402.

    Article  Google Scholar 

  16. Ehrman, C., Ruiz, R., Templeton, D., Adney, W. S., Baker, J. D., and Hsu, D. (1995), Chemical Analysis & Testing Standard Procedure, LAP no. 001-014, National Renewable Energy Laboratory, Golden CO.

    Google Scholar 

  17. McKibbins, S. W., Harris, J. F., Saeman, J. F., and Neill, W. K. (1962), Forest Prod. J. 12, 17.

    CAS  Google Scholar 

  18. Kabyemela, B. M., Adschiri, T., Malaluan, R. M., and Arai, K. (1999), Ind. Eng. Chem. Res. 38(8), 2888–2895.

    Article  CAS  Google Scholar 

  19. Xiang, Q., Kim, J. S., and Lee, Y. Y. (2003), Appl. Biochem. Biotechnol. 105–108, 337–352.

    Article  PubMed  Google Scholar 

  20. Fengel, D. and Wegener, G. (1984), Wood—Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany.

    Google Scholar 

  21. Torget, R. W., Kim, J. S., and Lee, Y. Y. (2000), Ind. Eng. Chem. Res. 39, 2817–2825.

    Article  CAS  Google Scholar 

  22. Shafizadeh, F. (1963), TAPPI 46, 381–383.

    CAS  Google Scholar 

  23. Timell, T. E. (1964), Can. J. Chem. 42, 1456–1472.

    Article  CAS  Google Scholar 

  24. Harris, J. F. (1975), Appl. Polym. Symp. 28, 131–144.

    CAS  Google Scholar 

  25. Philipp, B., Jacopian, V., Loth, F., Hirte, W., and Schulz, G. (1979), in Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Adv. Chem. Ser. 181, Brown, Jr. R. D. and Jurasek, L., eds., American Chemical Society, Washington, DC, pp. 127–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Q., Lee, Y.Y. & Torget, R.W. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol 115, 1127–1138 (2004). https://doi.org/10.1385/ABAB:115:1-3:1127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:115:1-3:1127

Index Entries

Navigation