Skip to main content
Log in

A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution

  • Session 3—Bioprocessing, Including Separations
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An energy-efficient hollow-fiber membrane extraction process was successfully developed to separate and recover lactic acid produced in fermentation. Although many fermentation processes have been developed for lactic acid production, and economical method for lactic acid recovery from the fermentation broth is still needed. Continuous extraction of lactic acid from a simulated aqueous stream was achieved by using Alamine 336 in 2-octanol contained in a hollow-fiber membrane extractor. In this process, the extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor, and the final product is a concentrated lactate salt solution. The extraction rate increased linearly with an increase in the Alamine 336 content in the solvent (from 5 to 40%). Increasing the concentration of the undissociated lactic acid in the feed solution by either increasing the lactate concentration (from 5 to 40 g/L) or decreasing the solution pH (from 5.0 to 4.0) also increased the extraction rate. Based on these observations, a reactive extraction model with a first-order reaction mechanism for both lactic acid and amine concentrations was proposed. The extraction rate also increased with an increase in the feed flow rate, but not the flow rates of solvent and the stripping solution, suggesting that the process was not limited by diffusion in the liquid films or membrane pores. A mathematical model considering both diffusion and chemical reaction in the extractor and back extractor was developed to simulate the process. The model fits the experimental data well and can be used in scale up design of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clary, J. J., Feron, V. J., and van Velthuijsen, J. A. (1998), Regul. Toxicol. Pharm. 27, 88–97.

    Article  CAS  Google Scholar 

  2. Nikles, S. M., Piao, M., Lane, A. M., and Nikles, D. E (2001), Green Chem. 3, 109–113.

    Article  CAS  Google Scholar 

  3. Datta, R., Tsai, S. P., Bonsignore, P., Moon, S. H., and Frank, J. R. (1995), FEMS Microbiol. Rev. 16, 221–231.

    Article  CAS  Google Scholar 

  4. Drumright, R. E., Gruber, P. R., and Henton, D. E. (2000), Adv. Mater, 12, 1841–1846.

    Article  CAS  Google Scholar 

  5. Wasewar, K. L., Heesink, A. B. M., Versteeg, G. F., and Pangarkar, V. G. (2002), J. Chem. Technol. Biol. 77 1068–1075.

    Article  CAS  Google Scholar 

  6. Holten, C. H. (1971), Lactic Acid, Verlag Chemie GmbH, Weinheim, Germany.

    Google Scholar 

  7. Tay, A. and Yang, S. T. (2002), Biotechnol. Bioeng. 80, 1–12.

    Article  PubMed  CAS  Google Scholar 

  8. Mulligan, C. N., Safi, B. F., and Grolea, U. D. (1991), Biotechnol. Bioeng. 38 1173–1181

    Article  CAS  Google Scholar 

  9. Tsai, S. P. and Moon, S. H. (1998), Appl. Biochem. Biotechnol. 70, 417–428.

    Google Scholar 

  10. Jin, Z. W. and Yang, S. T. (1998), Biotechnol. Prog. 14, 457–465.

    Article  PubMed  CAS  Google Scholar 

  11. Wu, Z. T., and Yang, S. T. (2003), Biotechnol. Bioeng. 82, 93–102.

    Article  PubMed  CAS  Google Scholar 

  12. Tay, A. (2002), PhD thesis, Ohio State University, Columbus, OH.

  13. Yang, C. W., Lu, Z. J., and Tsao, G. T. (1995), Appl. Biochem. Biotechnol. 51, 57–71.

    Article  Google Scholar 

  14. Vonktaveesuk, P., Tonokawa, M., and ishizaki, A. (1994), J. Ferment. Bioeng. 77, 508–512.

    Article  CAS  Google Scholar 

  15. Xuemei, L., Jianping, L., Móe, L., and Peilin, C. (1999), Bioprocess Eng. 20, 231–237.

    CAS  Google Scholar 

  16. Srivastava, A., Roychoudhury, P. K., and sahai, V. (1992), Biotechnol. Bioeng. 39, 607–613.

    Article  CAS  Google Scholar 

  17. Wang, J. L., Wen, X. H., and Zhou, D. (2000), Bioresour. Technol. 75, 231–234.

    Article  Google Scholar 

  18. Wang, J. L., Liu, P., and Zhou, D. (1994), Biotechnol. Tech. 8, 905–908.

    Article  CAS  Google Scholar 

  19. Planas, J., Radstrom, P., Tjerneld, F., and HahnHagerdal, B. (1996), Appl. Microbiol. Biotechnol. 45, 737–743.

    Article  CAS  Google Scholar 

  20. Kwon, Y. J., Kaul, R., and Mattiasson B. (1996), Biotechnol. Bioeng. 50, 280–290.

    Article  CAS  Google Scholar 

  21. Kertes, A. S., and King, C. J. (1986), Biotechnol. Bioeng. 28, 269–282.

    Article  CAS  Google Scholar 

  22. Lewis, V. P. and Yang, S. T. (1992), Biotechnol. Prog. 8, 104–110.

    Article  CAS  Google Scholar 

  23. Lazarova, Z., Syska, B., and Schugerl K. (2002), J. Membr. Sci. 202, 151–164.

    Article  CAS  Google Scholar 

  24. Reid, R. C., Prausnitz, J. M. and Sherwood, T. K. (1987), The Properties of Gases and Liquids, 4th Ed., McGraw-Hill, New York, NY.

    Google Scholar 

  25. San-Martin, M., Pazos, C., and Coca, J. (1992), J. Chem. Technol. Biotechnol. 54, 1–6.

    Article  CAS  Google Scholar 

  26. Yang, S. T., White, S. A., and Hsu, S. T. (1991), Ind. Eng. Chem. Res. 30, 1335–1343.

    Article  CAS  Google Scholar 

  27. Basu, R. and Sirkar, K. K. (1992), Solvent Extr. Ion Exch. 10, 119–142

    CAS  Google Scholar 

  28. Coelhoso, I. M., Silvestre, P., Viegas, R. M. C., Crespo, J. P. S. G., and Carrondo, M. J. T. (1997), J. Membr. Sci. 134 19–32.

    Article  CAS  Google Scholar 

  29. Juang, R. S., Chen, J. D., and Huang, H. C. (2000), J. Membr. Sci. 165, 59–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Yang, ST. & Ramey, D.E. A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution. Appl Biochem Biotechnol 114, 671–688 (2004). https://doi.org/10.1385/ABAB:114:1-3:671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:671

Index Entries

Navigation