Skip to main content
Log in

Succinic acid adsorption from fermentation broth and regeneration

  • Session 3—Bioprocessing, Including Separations
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

More than 25 sorbents were tested for uptake of succinic acid from aqueous solutions. The best resins were then tested for successive loading and regeneration using hotwater. The key desired properties for an ideal sorbent are high capacity, complete stable regenerability, and specificity for the product. The best resins have a stable capacity of about 0.06 g of succinic acid/g of resin at moderate concentrations (1–5 g/L) of succinic acid. Several sorbents were tested more exhaustively for uptake of succinic acid and for successive loading and regeneration using hot water. One resin, XUS 40285, has a good stable isotherm capacity, prefers succinate over glucose, and has good capacities at both acidic and neutral pH. Succinic acid was removed from simulated media containing salts, succinic acid, acetic acid, and sugar using a packed column of sorbent resin, XUS 40285. The fermentation byproduct, acetate, was completely separated from succinate. A simple hot water regeneration successfully concentrated succinate from 10 g/L (inlet) to 40–110 g/L in the effluent. If successful, this would lower separation costs by reducing the need for chemicals for the initial purification step. Despie promising initial results of good capacity (0.06 g of succinic/g of sorbent), 70% recovery using hot water, and a recovered concentration of >100 g/L, this regeneration was not stable over 10 cycles in the column. Alternative regeneration schemes using acid and base were examined. Two (XUS 40285 and XFS-40422) showed both good stable capacities for succinic acid over 10 cycles and >95% recovery in a batch operation using a modified extraction procedure combining acid and hot water washes. These resins showed comparable results with actual broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bozell, J. J. and Landucci, R. (1993), NREL Report #TP4305565, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  2. Datta, R. (1992), US patent no. 5,143,833.

  3. Glassner, D. A. and Datta, R. (1992), US patent no. 5,143,834.

  4. Donnelly, M., Millard, C. S., and Stols, L. (2001), US patent no. RE37, 393, reissue of US patent no. 5,770,435.

  5. Donnelly, M.I., Sanville-Millard, C., and Chatterjee, R. (2001), US patent no. 6,159,738.

  6. Garcia, A. A. (1991), Biotechnol. Prog. 7, 33–42.

    Article  PubMed  CAS  Google Scholar 

  7. Gaillot, F. P., Gleason, C., Wilson, J. J., and Zwarick, J. (1990), Biotechnol. Prog. 6, 370–375.

    Article  Google Scholar 

  8. Kaufman, E. N., Cooper, S. P., and Davison, B. H. (1994), Appl. Biochem. Biotech. 45/46, 545–554.

    Article  Google Scholar 

  9. Garcia, A. A. and King, C. J. (1988), Report no. LBL-24543, Lawrence Berkeley Laboratory, Berkeley, CA.

    Google Scholar 

  10. Kawabata, N., Yoshida, J., and Tanigawa, Y. (1981), Ind. Eng. Chem. Prod. Res. Dev. 20, 386–390.

    Article  CAS  Google Scholar 

  11. Tung, L. A. and King, C. J. (1994), Ind. Eng. Chem. Res. 33, 3217–3223.

    Article  CAS  Google Scholar 

  12. Garcia, A. A. and King, C. J. (1989), Ind. Eng. Chem. Res. 28, 204–212.

    Article  CAS  Google Scholar 

  13. Tung, L. A. and King, C. J. (1995), Ind. Eng. Chem. Res. 28, 3224–3229.

    Google Scholar 

  14. King, C. J. and Tung, L. A. (1992), US patent no 5,132,456.

  15. Husson, S. M. and King, C. J. (1999), Ind. Eng. Chem. Res. 38, 502–511.

    Article  CAS  Google Scholar 

  16. Kaufman, E. N., Cooper, S. P., Budner, M. K., and Richardson, G. (1996), Appl. Biochem. Biotechnol. 57/58, 503–515.

    CAS  Google Scholar 

  17. Evangelista, R. L., Mangold, A. J., and Nikolov, Z. L. (1994), Appl. Biochem. Biotechnol. 45/46, 131–144.

    Google Scholar 

  18. Wang, H. Y., Robinson, F. M., and Lee, S. S. (1981), Biotech. Bioeng. Symp. Ser. 11, 555–565.

    CAS  Google Scholar 

  19. Wang, H. Y. and Sobnosky, K. (1985), ACS Symp. Ser. 271, 123–131.

    Article  CAS  Google Scholar 

  20. Seevarantnam, J., Holst, O., Hjorleifsdottir, S., and Mattiasson, B. (1991), Bioprocess Eng. 6, 35–41.

    Article  Google Scholar 

  21. Srivastava, A., Roychoudhury, P. K., and Sahai, V. (1992), Biotechnol. Bioeng. 39, 607–613.

    Article  CAS  Google Scholar 

  22. Davison, B. H. and Thompson J. E. (1992), Appl. Biochem. Biotechnol. 34/35, 431–439.

    Article  Google Scholar 

  23. Ng, M. and King, C. J. (1988), MS thesis, report no. LBL-25542, Lawrence Berkeley Laboratory, Berkeley, CA.

    Google Scholar 

  24. Ernset, E. E. and McQuigg, D. M. (1992), Paper presented at AIChE National Meeting, Miami Beach, FL.

  25. Husson, S. M. and King, C. J. (1998), Ind. Eng. Chem. Res. 37, 2996–3005

    Article  CAS  Google Scholar 

  26. Berglund, K., Yedur, S., and Dunuwila, D. D. (1999), US patent no. 5,958,744.

  27. Yedur, S., Berglund, K. A., and Dunuwila, D. D. (2001), US patent no. 6,265,190.

  28. Nghiem, N. P., Donnelly, M., Millard, C. S., and Stols, L. (1999), US patent no. 5,869,301.

  29. Davison, B., Nghiem, J., Donnelly, M., Tsai, S., Frye, J., Landducci, R., and Griffin, M. (2002), CRADA Final Report No. 96-0407, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  30. Davison, B., Nghiem, J., Donnelly, M., and Peabody, M. (2003), CRADA Final Report no. C/ORNL/99-0552, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Davison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, B.H., Nghiem, N.P. & Richardson, G.L. Succinic acid adsorption from fermentation broth and regeneration. Appl Biochem Biotechnol 114, 653–669 (2004). https://doi.org/10.1385/ABAB:114:1-3:653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:653

Index Entries

Navigation