Skip to main content
Log in

Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The cyanobacterium Spirulina platensis was cultivated in bench-scale miniponds on bicarbonate/carbonate solutions using urea as nitrogen source. To minimize limitation and inhibition phenomena, urea was supplied semicontinuously using exponentially increasing feeding rates. The average growth rates obtained alternately varying the total mass of urea added per unit reactor volume (275<m T<725 mg/L) and the total feeding time (9<t T<15 d) clearly evidenced nitrogen limitation for m T<500 mg/L and excess nitrogen inhibition above this threshold. The time behavior of the specific growth rate at variable urea feeding patterns allowed estimation of the time-dependent Gibbsenergy dissipation for cell growth under the actual depletion conditions of fed-batch cultivations. Comparison of the yield of growth on Gibbs energy obtained using either urea or KNO3 pointed to the preference of S. platensis for the former nitrogen source, likely owing to more favorable bioenergetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piorreck, M., Baasch, K. L., and Pohl, P. (1984), Phytochemistry 23, 207–213.

    Article  CAS  Google Scholar 

  2. Walach, M. R., Bazin, M. J., Pirt, S. J., and Balyuzi, H. H. M. (1987), Biotechnol. Bioeng. 29, 520–528.

    Article  CAS  Google Scholar 

  3. Mahajan, G. and Kamat, M. (1995), Appl. Microbiol. Biotechnol. 43, 466–469.

    Article  CAS  Google Scholar 

  4. Richmond, A. (1983), in Biotechnology, vol. 3, Rehm, H.-J. and Reed, G., eds., Verlag Chemie, Weinheim, Germany, pp. 109–143.

    Google Scholar 

  5. Cohen, Z. (1997), in Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Vonshak, A., ed., Taylor & Francis, London, pp. 175–204.

    Google Scholar 

  6. Durand-Chastel, H. (1980), Production and Use of Spirulina in Mexico, Elsevier Biomedical, Amsterdam, The Netherlands.

    Google Scholar 

  7. Deshnium, P., Paithoonrangsarid, K., Suphatrakul, A., Meesapyodsuk, D., Tanticharoen, M., and Cheevadhanarak, S. (2000), FEMS Microbiol. Lett. 184, 207–213.

    Article  CAS  Google Scholar 

  8. Babu, T. S., Kumar, A., and Warma, A. K. (1991), Plant Physiol. 95, 492–497.

    CAS  Google Scholar 

  9. Ciferri, O. and Tiboni, O. (1985), Microbiologia (Italy) 39, 503–526.

    CAS  Google Scholar 

  10. Stanca, D. and Popovici, E. (1996), Rev. Roum. Biol. 41, 25–31.

    CAS  Google Scholar 

  11. Cornet, J. F., Dussap, C. G., Cluzel, P., and Dubertret, G. (1992), Biotechnol. Bioeng. 40, 826–834.

    Article  CAS  Google Scholar 

  12. Paoletti, C., Pushparaj, B., and Tomaselli, L. (1975), in Atti del 17 Congresso Nazionale della Società Italiana di Microbiologia, Padova, Società Italiana di Microbiologia, Rome, Italy, pp. 833–839.

    Google Scholar 

  13. Schlösser, U. G. (1982), Ber. Deutsch Bot. Ges. 95, 181–276.

    Google Scholar 

  14. Boussiba, S. (1989), Plant Cell Physiol. 30, 303–308.

    CAS  Google Scholar 

  15. Funteu, F., Guet, C., Wu, B., and Trémoliéres, A. (1997), Plant Physiol. Biochem. 35, 63–71.

    CAS  Google Scholar 

  16. Pirt, S. J., Walach, M. R., and Bazin, M. J. (1987), Biotechnol. Bioeng. 24, 520–528.

    Google Scholar 

  17. Chen, F. and Zhang, Y. (1997), Enzyme Microb. Technol. 20, 221–224.

    Article  CAS  Google Scholar 

  18. Danesi, E. D. G., Rangel-Yagui, C. O., Carvalho, J. C. M., and Sato, S. (2002), Biomass Bioenergy 23, 261–269.

    Article  CAS  Google Scholar 

  19. Belay, A. (1997), in Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Vonshak, A., ed., Taylor & Francis, London, pp. 131–158.

    Google Scholar 

  20. Lynch, D. V. and Thompson, G. A. (1984), Plant Physiol. 74, 193–197.

    CAS  Google Scholar 

  21. Heijnen, J. J. (2001), in Basic Biotechnology, 2nd ed., Ratledge, C. and Kristiansen, B., eds., Cambridge University Press, Cambridge, UK, pp. 45–58.

    Google Scholar 

  22. Roels, J. A. (1983), Energetics and Kinetics in Biotechnology, Elsevier Biomedical, Amsterdam, The Netherlands.

    Google Scholar 

  23. Carvalho, J. C. M. and Sato, S. (2001), in Biotechnologia Industrial, vol. 2, Schmidell, W., Lima, U. A., Aquarone, E., and Borzani, W., eds., Edgar Blücher, São Paulo, Brazil, pp. 205–218.

    Google Scholar 

  24. Hatori, A. and Myers, J. (1966), Plant Physiol. 41, 1031–1036.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attilio Converti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassano, C.E.N., Carvalho, J.C.M., Gioielli, L.A. et al. Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source. Appl Biochem Biotechnol 112, 143–150 (2004). https://doi.org/10.1385/ABAB:112:3:143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:112:3:143

Index Entries

Navigation