Applied Biochemistry and Biotechnology

, Volume 106, Issue 1–3, pp 423–436 | Cite as

Preliminary investigation of fungal bioprocessing of wheat straw for production of straw-thermoplastic composites

  • David N. Thompson
  • Tracy P. Houghton
  • Jeffrey A. Lacey
  • Peter G. Shaw
  • J. Richard Hess
Article

Abstract

Straw utilization for composites is limited by poor resin and polymer penetration, and excessive resin consumption owing to the straw cuticle, fines, and lignin-hemicellulose matrix. White-rot fungi degrade these components of straw and could, therefore, potentially be used to improve resin penetration and resin binding without the use of physical or chemical pretreatments. Although long treatment times and large footprints the limit use of fungal treatments on a large scale, distributed fungal pretreatments could alleviate land requirements. In this article, we present progress toward the development of a passive fungal straw upgrading system utilizing whiterot fungi.

Index Entries

Fungal upgrading white-rot fungi wheat straw Pleurotus ostreatus straw composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolcott, M. P. and Englund, K. (1999), in Proceedings of the 33rd International Particleboard/Composite Materials Symposium, Wolcott, M. P., Tichy, R. J., and Bender, D. A., eds., Washington State University, Pullman, WA, pp. 103–111.Google Scholar
  2. 2.
    Sanadi, A. R., Caulfield, D. F., and Jacobson, R. E. (1997), in Paper and Composites from Agro-Based Resources, Rowell, R. M., Young, R. A., and Rowell, J. K., eds., CRC, Boca Raton, FL, pp. 377–402.Google Scholar
  3. 3.
    Marsden, W. L. and Gray, P. P. (1986), Crit. Rev. Biotechnol. 3(3), 235–276.CrossRefGoogle Scholar
  4. 4.
    Converse, A. O., Kwarteng, I. K., Grethlein, H. E., and Ooshima, H. (1989), Appl. Biochem. Biotechnol. 20/21, 63–78.Google Scholar
  5. 5.
    Cowling, E. B. and Kirk, T. K. (1976), Biotechnol. Bioeng. Symp. 6, 95–123.PubMedGoogle Scholar
  6. 6.
    Thompson, D. N., Chen, H.-C., and Grethlein, H.E. (1992), Bioresour. Technol. 39, 155–163.CrossRefGoogle Scholar
  7. 7.
    Fan, L. T., Lee, Y.-H., and Gharpuray, M. M. (1982), Adv. Biochem. Eng. 23, 157–187.Google Scholar
  8. 8.
    Knappert, D., Grethlein, H., and Converse, A. (1980), Biotechnol. Bioeng. 22, 1449–1463.CrossRefGoogle Scholar
  9. 9.
    Goldstein, I. S., Pereira, H., Pittman, J. L., Strause, B. A., and Scaringelli, F. P. (1983), Biotechnol. Bioeng. Symp. 13, 17–25.Google Scholar
  10. 10.
    Playne, M. J. (1984), Biotechnol. Bioeng. 26, 426–433.CrossRefGoogle Scholar
  11. 11.
    Weimer, P. J., Chou, Y.-C.T., Weston, W. M., and Chase, D. B. (1986), Biotechnol. Bioeng. Symp. 17, 5–18.Google Scholar
  12. 12.
    Avgerinos, G. C. and Wang, D. I. C. (1983), Biotechnol. Bioeng. 25, 67–83.CrossRefGoogle Scholar
  13. 13.
    Taylor, J. D. (1981), in Energy from Biomass, 1st E. C. Conference, Palz, W., Chartier, P., and Hall, D. O., eds., Applied Science, London, UK, pp. 330–336.Google Scholar
  14. 14.
    Hatakka, A. I. (1983), Eur. J. Microbiol. Biotechnol. 18, 350–357.CrossRefGoogle Scholar
  15. 15.
    Avella, M., Casale, L., Dell’erba, R., Focher, B., Martuscelli, E., and Marzetti, A. (1998), J. Appl. Polym. Sci. 68, 1077–1089.CrossRefGoogle Scholar
  16. 16.
    Hess, J. R., Thompson, D. N., Hoskinson, R. L., Shaw, P. G., and Grant, D. R., (2003), Physical Separation of Straw Stem Components to Reduce Silica, in Applied Biochemistry and Biotechnology, vol. 105–108, Humana Press, Totowa, NJ, pp. 43–52.Google Scholar
  17. 17.
    Boominathan, K. and Reddy, C. A. (1992), in Handbook of Applied Mycology, vol. 4, Arora, D. K., Elander, R. P., and Mukerji, K. G., eds., Marcel-Dekker, New York, NY, pp. 763–822.Google Scholar
  18. 18.
    Blanchette, R. A., Abad, A. R., Farrell, R. L., and Leathers, T. D. (1989), Appl. Environ. Microbiol. 55, 1457–1465.PubMedGoogle Scholar
  19. 19.
    Valmaseda, M., Almendros, G., and Martinez, A. T. (1990), Appl. Microbiol. Biotechnol. 33, 481–484.CrossRefGoogle Scholar
  20. 20.
    Moyson, E. and Verachtert, H. (1991), Appl. Microbiol. Biotechnol. 36, 421–424.CrossRefGoogle Scholar
  21. 21.
    Gamble, G. R., Akin, D. E., Makkar, H. P. S., and Becker, K. (1996), Appl. Environ. Microbiol. 62, 3600–3604.PubMedGoogle Scholar
  22. 22.
    Hadar, Y., Kerem, Z., and Gorodecki, B. (1993), J. Biotechnol. 30, 133–139.CrossRefGoogle Scholar
  23. 23.
    Lindfelser, L. A., Detroy, R. W., Ramstack, J. M., and Worden, K. A. (1979), Dev. Ind. Microbiol. 20, 541–551.Google Scholar
  24. 24.
    Kirk, T. K. and Farrell, R. L. (1987), Annu. Rev. Microbiol. 41, 465–505.PubMedCrossRefGoogle Scholar
  25. 25.
    American Public Health Association. (1989), in Standard Methods for the Examination of Water and Wastewater, 17th ed., Clesceri, L. S., Greenberg, A. E., Trussell, R. R., and Franson, M. A. H., eds., American Public Health Association, Washington, DC, pp. 4-144–4-147.Google Scholar
  26. 26.
    Cherry, R. S. and Thompson, D. N. (1997), Biotechnol. Bioeng. 56(3), 330–339.CrossRefGoogle Scholar
  27. 27.
    Kastner, J. R., Thompson, D. N., and Cherry, R. S. (1999), Enzyme. Microb. Technol. 24(1/2), 104–110.CrossRefGoogle Scholar
  28. 28.
    Stahl, J. D. and Aust, S. D. (1998), Rev. Toxicol. 2, 189–194.Google Scholar
  29. 29.
    Saeman, J. F., Bubl, J. L., and Harris, E. E. (1945), Ind. Eng. Chem. 17(1), 35–37.CrossRefGoogle Scholar
  30. 30.
    Martinez, A. T., Camarero, S., Guillén, F., Gutiérrez, A., Muñoz, C., Varela, E., Martinéz, M. J., Barrasa, J. M., Ruel, K., and Pelayo, J. M. (1994), FEMS Microbiol. Rev. 13, 265–274.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • David N. Thompson
    • 1
  • Tracy P. Houghton
    • 1
  • Jeffrey A. Lacey
    • 1
  • Peter G. Shaw
    • 1
  • J. Richard Hess
    • 1
  1. 1.Biotechnology DepartmentIdaho National Engineering and Environmental LaboratoryIdaho Falls

Personalised recommendations