Xylem-specific and tension stress-responsive expression of cellulose synthase genes from aspen trees


Genetic improvement of cellulose biosynthesis in woody trees is one of the major goals of tree biotechnology research. Yet, progress in this field has been slow owing to (1) unavailability of key genes from tree genomes, (2) the inability to isolate active and intact cellulose synthase complexes and, (3) the limited understanding of the mechanistic processes involved in the wood cellulose development. Here I report on the recent advances in molecular genetics of cellulose synthases (CesA) from aspen trees. Two different types of cellulose synthases appear to be involved in cellulose deposition in primary and secondary walls in aspen xylem. The three distinct secondary CesAs from aspen—PtrCesA1, PtrCesA2, and PtrCesA3—appear to be aspen homologs of Arabidopsis secondary CesAs AtCesA8, AtCesA7, and AtCesA4, respectively, based on their high identity/similarity (>80%). These aspen CesA proteins share the transmembrane domain (TMD) structure that is typical of all known “true” CesA proteins: two TMDs toward the N-terminal and six TMDs toward the C-terminal. The putative catalytic domain is present between TMDs 2 and 3. All signature motifs of processive glycosyltransferases are also present in this catalytic domain. In a phylogenetic tree based on various predicted CesA proteins from Arabidopsis and aspen, aspen CesAs fall into families similar to those seen with Arabidopsis CesAs, suggesting their functional similarity. The coordinate expression of three aspen secondary CesAs in xylem and phloem fibers, along with their simultaneous tension stress-responsive upregulation, suggests that these three CesAs may play a pivotal role in biosynthesis of better-quality cellulose in secondary cell walls of plants. These results are likely to have a direct impact on genetic manipulation of trees in the future.

This is a preview of subscription content, access via your institution.


  1. 1.

    Delmer, D. P. (1999), Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 245–276.

    Article  CAS  Google Scholar 

  2. 2.

    Brown, R. M. Jr., Saxena, I.M. and Kudlicka, K. (1996), Trends Plant Sci. 1, 149–156.

    Article  Google Scholar 

  3. 3.

    Delmer, D. P. and Amor, Y. (1995), Plant Cell 7, 987–1000

    Article  CAS  Google Scholar 

  4. 4.

    Haigler, C. (1985), in Cellulose Chemistry and Applications, Nevell, T. P. and Zoronian, S. H., eds., Ellis Horwood, Chichester, UK, pp. 30–83.

    Google Scholar 

  5. 5.

    Timell, T. E. (1986), Compression Wood in Gymnosperms. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  6. 6.

    Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder C.R., and Brown, R.M. (1999), Plant Cell 11, 2075–2085.

    Article  CAS  Google Scholar 

  7. 7.

    Haigler, C. and Blanton, R. L. (1996), Proc. Natl. Acad. Sci. USA 93, 12,082–12,085.

    Article  CAS  Google Scholar 

  8. 8.

    Saxena, I. M., Lin, F. C., Brown, R. M. (1990), Plant Mol. Biol. 15, 673–683.

    Article  CAS  Google Scholar 

  9. 9.

    Saxena, I. M., Brown, R. M., Fevre, M., Geremia, R. A., and Henrissat, B. (1995), J. Bacteriol. 177, 1419–1424.

    CAS  Google Scholar 

  10. 10.

    Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P., and Stalker, D. M. (1996) Proc. Natl. Acad. Sci. USA 93, 12,637–12,642.

    Article  CAS  Google Scholar 

  11. 11.

    Richmond, T. A. (2000), Genome Biol. 1(4), Rev. 3001.1–3001.6.

  12. 12.

    Taylor, N. G., Scheible W.-R., Cutler, S., Somerville, C. R., and Turner, S. R. (1999), Plant Cell 11, 769–779.

    Article  CAS  Google Scholar 

  13. 13.

    Holland, N., Holland, D., Helentjaris, T., Dhugga, K., Xoconostle-Cazares, B., and Delmer, D. P. (2000), Plant Physiol. 123, 1313–1323.

    Article  CAS  Google Scholar 

  14. 14.

    Taylor, N. G., Laurie, S., and Turner, S. R. (2000), Plant Cell 12, 2529–2540.

    Article  CAS  Google Scholar 

  15. 15.

    Joshi, C. P. (2003), in Molecular Genetics and Biotechnology of Forest Trees, Kumar, S. and Fladung, M., eds., Howarth, Howarth, NY.

    Google Scholar 

  16. 16.

    Dadswell, H. E. and Wardrop, A. B. (1955), Holzforschung 9, 97–103.

    CAS  Article  Google Scholar 

  17. 17.

    Norberg, P. H. and Meier, H. (1966), Holzforschung 20, 174–178.

    CAS  Article  Google Scholar 

  18. 18.

    Timell, T. E. (1969), Svensk Papperstidning 72, 173–181.

    CAS  Google Scholar 

  19. 19.

    Wu, L., Joshi, C. P., and Chiang, V. L. (2000), Plant J 22, 495–502.

    Article  CAS  Google Scholar 

  20. 20.

    Kawagoe, Y. and Delmer, D. P. (1997) in Genetic Engineering, vol. 19, Setlow, J. K., ed., Plenum, New York, NY, pp 63–87.

    Google Scholar 

  21. 21.

    Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., and Hofte, H. (2000), Plant Cell 12, 2409–2424.

    Article  CAS  Google Scholar 

  22. 22.

    Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., et al. (1998), Science 279, 717–720.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chandrashekhar P. Joshi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joshi, C.P. Xylem-specific and tension stress-responsive expression of cellulose synthase genes from aspen trees. Appl Biochem Biotechnol 105, 17–25 (2003). https://doi.org/10.1385/ABAB:105:1-3:17

Download citation

Index Entries

  • Aspen
  • cellulose biosynthesis
  • cellulose synthase
  • trees
  • wood development