Skip to main content
Log in

Continuous oxygen monitoring of mammalian cell growth on space shuttle mission STS-93 with a novel radioluminescent oxygen sensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A compact, flow-through oxygen sensor device based on luminescence quenching was used to monitor dissolved oxygen levels during mammalian cell growth on the STS-93 mission of the Columbia space shuttle. Excitation of an oxygen-sensitive ruthenium complex was provided by a radiolumin escent light source (0.9 mm in diameter, 2.5 mm long), and the intensity of the resulting luminescence was measured by a simple photodiode detector. The use of radiolum inescence for the excitation light source is a unique approach that provides many features important for long-term and remote monitoring applications. For the spaceflight experiment, human lung fibroblast cells (WI-38) were grown in hollow-fiber bioreactors. Oxygen concentration was measured in the flow path both before and after the bioreactor cartridge in order to gain information about the metabolism of the cells. The sensor was found to be nonperturbing to cell growth and withstood the challenging physical conditions of shuttle launch and landing while maintaining a stable calibration function. In addition, the sensor provided physically meaningful oxygen predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orna, M. V. (1989), in Elect rochemistry, Past and Present, vol. 390, Stock, J. T. and Orna, M. V., eds., American Chemical Society, Washington, DC, pp. 196–210.

    Google Scholar 

  2. Harris, D. C. (1995), Quantitative Chemical Analysis, W. H. Freeman, New York.

    Google Scholar 

  3. Turner, A. P. F. and White, S. F. (1999), in Encycloped in of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, vol. 4, Flickinger, M. C., and Drew, S. W., eds., Wiley, New York, pp. 2056–2070.

    Google Scholar 

  4. Chuang, H. and Arnold, M. A. (1999), Pure Appl. Chem. 71, 803–810.

    CAS  Google Scholar 

  5. Demas, J. N. and DeGraff, B. A. (1991), Anal. Chem. 63, 829A-837A.

    CAS  Google Scholar 

  6. Kneas, K. A., Demas, J. N., DeGraff, B. A., and Periasamy, A. (2000), Microsc. Microanal. 6, 551–561.

    CAS  Google Scholar 

  7. Demas, J. N., DeGraff, B. A., and Coleman, P. B. (1999), Anal. Chem. 71, 793A-800A.

    CAS  Google Scholar 

  8. Carraway, E. R., Demas, J. N., DeGraff, B. A., and Bacon, J. R. (1991), Anal. Chem. 63, 337–342.

    Article  CAS  Google Scholar 

  9. Oxygen Sensor for Respiration Monitoring, Ocean Optics, www.oceanoptics.com/products/respirationmonitor.asp. Accessed May 2002.

  10. Photosense LLC/Products and Technology, www.photosense.com/products.html. Accessed May 2002.

  11. Griffiths, J. R. and Robinson, S. P. (1999), Br. J. Radiol. 72, 627–630.

    CAS  Google Scholar 

  12. Chuang, H. and Arnold, M. A. (1997), Anal. Chem. 69, 1899–1903.

    Article  CAS  Google Scholar 

  13. Demas, J. N. and DeGraff, B. A. (1992), in Chemical Biochemical, and Environmental Fiber Sensors IV, vol. 1796, Lieberman, R. A., ed., International Society for Optical Engineering, Bellingham, WA, pp. 71–75.

    Google Scholar 

  14. Chuang, H. and Arnold, M. A. (1998), US patent 5708957.

  15. Wang, E. (1999), FASEB J. 13, S167-S174.

    Google Scholar 

  16. Semov, A., Semova, N., Lacelle, C., Marcotte, R., Petroulakis, E., Proestou, G., and Wang, E. (2002), FASEB J. 16, 899–901.

    CAS  Google Scholar 

  17. White, D. O., Harris, A. W., Cheyne, I. M., Shulman, A., and Bradley, T. R. (1969), Aust. J. Exp. Biol. Med. Sci. 47, 81–89.

    CAS  Google Scholar 

  18. Van Houten, J. and DeGraff, B. A. (1993), Sens. Actuators B 11, 35–41.

    Article  Google Scholar 

  19. Draxler, S. (1999), J. Phys. Chem. A 103, 4719–4722.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reece, J.S., Miller, M.J., Arnold, M.A. et al. Continuous oxygen monitoring of mammalian cell growth on space shuttle mission STS-93 with a novel radioluminescent oxygen sensor. Appl Biochem Biotechnol 104, 1–11 (2003). https://doi.org/10.1385/ABAB:104:1:1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:104:1:1

Index Entries

Navigation