Applied Biochemistry and Biotechnology

, Volume 135, Issue 1, pp 43–57 | Cite as

Mutagenesis and analysis of mold Aspergillus niger for extracellular glucose oxidase production using sugarcane molasses

  • O. V. Singh
Original Research Articles


Aspergillus niger ORS-4.410, a mutant of A. niger ORS-4, was generated by repeated ultraviolet (UV) irradiation. Analysis of the UV treatment dose on wild-type (WT) A. niger ORS-4, conidial survival, and frequency of mutation showed that the maximum frequency of positive mutants (25.5%) was obtained with a 57% conidial survival rate after the second stage of UV irradiation. The level of glucose oxidase (GOX) production from mutant A. niger ORS-4.410 thus obtained was 149% higher than that for WT strain A. niger ORS-4 under liquid culture conditions using hexacyanoferrate (HCF)-treated sugarcane molasses (TM) as a cheaper carbohydrate source. When subcultured monthly for 24 mo, the mutant strain had consistent levels of GOX production (2.62±0.51 U/mL). Mutant A. niger ORS-4.410 was markedly different from the parent strain morphologically and was found to grow abundantly on sugarcane molasses. The mutant strain showed 3.43-fold increases in GOX levels (2.62±0.51 U/mL) using HCF-TM compared with the crude form of cane molasses (0.762±0.158 U/mL).

Index Entries

Glucose oxidase sugarcane molasses submerged fermentation Aspergillus niger mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witteveen, C. F. B., Vande Vondervoort, P., Swart, K., and Visser, J. (1990) Appl. Microbiol. Biotechnol. 33, 683–686.CrossRefGoogle Scholar
  2. 2.
    Roehr, M., Kubicek, C. P., and Kominek, J. (1996), in Biotechnology, Product of Primary Metabolism (Rehm, H. J. and Reed, G. eds.), Verlag Chemie, Weinheim, pp. 347–362.Google Scholar
  3. 3.
    Hatzinikolaou, D.G., Hansen, O.C., Macris, B. T., Tingey, A., Kekos, D., Goodenough, P., and Stougaard, P. (1996), Appl. Microbiol. Biotechnol. 46, 371–381.Google Scholar
  4. 4.
    Kiess, M., Hecht, H. J., and Kalisz, H. M. (1998), Eur. J. Biochem., 252, 90–99.CrossRefGoogle Scholar
  5. 5.
    Park, E. H., Shin, Y. M., Lim, Y.Y., Kwon, T.H., Kim, D.H., and Yang, M. S. (2000), J. Biotechnol. 81, 35–44.CrossRefGoogle Scholar
  6. 6.
    Liu, J. Z., Hung, Y. Y., Liu, J., Weng, L. P., and Ji, L. N. (2001), Lett. Appl. Microbiol. 32, 16–19.CrossRefGoogle Scholar
  7. 7.
    Malherbe, D. F., Du Toit, M., Cordero Otero, R. R., van Rensburg, P., and Pretorius, I. S. (2003), Appl. Microbiol. Biotechnol., 61, 502–511.Google Scholar
  8. 8.
    Witteveen, C. F. B., Van de Vondervoort, P. J. I., Van den Broeck, H. C., et al. (1993), Curr. Genet. 24, 408–416.CrossRefGoogle Scholar
  9. 9.
    Petruccioli, M., Piccioni, P., Federict, F., and Polsinelli, M. (1995), FEMS Microbiol. Lett. 128, 107–112.CrossRefGoogle Scholar
  10. 10.
    Kapat, A., Jung J. K., and Park, Y. H., (1999), Biotechnol. Lett. 20, 683–686.CrossRefGoogle Scholar
  11. 11.
    Kapat, A., Jung, J. K., and Park, Y. H. (2001) J. Appl. Microbiol. 90, 216–222.CrossRefGoogle Scholar
  12. 12.
    Fiedurek, J., Gromada, A., and Prelecki, J., (1998), Acta Microbiol. Pol. 47, 355–364.Google Scholar
  13. 13.
    Kona, R. P., Qureshi, N., and Pai, J. S. (2001) Bioresour. Technol. 78, 123–126.CrossRefGoogle Scholar
  14. 14.
    Luque, R., Orejas, M., Perotti, N. I., Ramon, D., and Lucca, M. E. (2004), J. Appl. Microbiol. 97, 332–337.CrossRefGoogle Scholar
  15. 15.
    Singh, O. V. (2000), PhD thesis, Indian Institute of Technology (IIT), (formerly University of Roorkee), Roorkee, India.Google Scholar
  16. 16.
    Bergmeyer, H. U. (1974), in Methods of Enzymatic Analysis, Bergmeyer, H. U., ed., Academic, New York, pp. 457–460.Google Scholar
  17. 17.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.Google Scholar
  18. 18.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  19. 19.
    Mann, F. G., and Saunders, B. C. (1960), in Practical Organic Chemistry, 4th ed., Longmans, London, pp. 458–461.Google Scholar
  20. 20.
    Bagdasaryan, Z. N., Aleksanvan, G. A., Mirzoyan, A. M., Roseiro, J. C., and Bagdasaryan, S. N. (2005), Appl. Biochem. Biotechnol., 125, 113–126.CrossRefGoogle Scholar
  21. 21.
    Shukla, V. B., Zhou, S., Yomano, L. P., Shanmugam, K. T., Preston, J. F., and Ingram, L. O. (2004), Biotechnol. Lett. 26, 689–693.CrossRefGoogle Scholar
  22. 22.
    Fiedurek, J. and Ilczuk, Z. (1992), Acta Microbiol. Pol. 41, 179–186.Google Scholar
  23. 23.
    Fiedurek, J. and Gromada, A. (2000), J. Appl. Microbiol. 89, 85–89.CrossRefGoogle Scholar
  24. 24.
    Gromada, A., and Fiedurek, J. (1996), Acta Microbiol. Pol. 45, 37–43.Google Scholar
  25. 25.
    Tahoun, M. K. (1993), Appl. Biochem. Biotechnol., 39–40, 289–295.CrossRefGoogle Scholar
  26. 26.
    Markwell, J., Frakes, L. G., Brott, E. C., Osterman, J., and Wagner, F. W. (1989), Appl. Microbiol. Biotechnol. 30, 166–169.CrossRefGoogle Scholar
  27. 27.
    Ko, J. H., Hahm, M. S., Kang, H. A., Nam, S. W., and Chung, B. H. (2002), Protein Expr. Purif. 25, 488–493.CrossRefGoogle Scholar
  28. 28.
    Lomkatsi, E. T., Radiami, T. S., Shkolni, A. T., et al. (1990), Acta Biotechnol. 10, 377–381.CrossRefGoogle Scholar
  29. 29.
    Jefferson, W. R. Jr. (1967), Biochemistry 6, 3479–3484.CrossRefGoogle Scholar
  30. 30.
    Panda, T., Kundu, S., and Majumdar, S. K., (1984), Microbiol. J. 52, 61–66.Google Scholar
  31. 31.
    Lu, T., Peng, X., Yang, H., and Ji, L. (1996), Enzyme Microb. Technol., 19, 339–342.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • O. V. Singh
    • 1
  1. 1.Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia
  2. 2.Department of PediatricsThe Johns Hopkins School of MedicineBaltimore

Personalised recommendations