Skip to main content
Log in

Catalytic hydrogenation of glutamic acid

  • Session 5 Biobased Industrial Chemicals
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Technology to convert biomass into chemical building blocks provides an opportunity to displace fossil fuels and increase the economic viability of biorefineries. Coupling fermentation capability with aqueous-phase catalysis provides novel routes to monomers and chemicals, including those not accessible from petrochemical routes. Glutamic acid provides a platform to numerous compounds through thermochemical approaches including hydrogenation, cyclization, decarboxylation, and deamination. Hydrogenation of amino acids also provides access to chiral compounds with high enantiopurity. This article detals aqueous-phase hydrogenation reactions that we have developed that lead to valuable chemical intermediates from glutamic acid. In addition, 13C nuclear magnetic resonance and matrix-assisted laser desorption ionization mass spectral data are presented that provide a mechanistic picture of the reactions. The results show that hydrogenation of glutamic acid has unique characteristics from other amino acids and that paradigms in the literature do not hold up for this transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (2003), Japan Chemical Week, April 24.

  2. Bowden, E. and Adkins, H. (1934), J. Am. Chem. Soc. 56, 689–691.

    Article  CAS  Google Scholar 

  3. Adkins, H. and Billica, H. R. (1948), J. Am. Chem. Soc. 70, 3118–3120.

    Article  CAS  Google Scholar 

  4. Adkins, H. and Billica, H. R. (1948), J. Am. Chem. Soc. 70, 3121–3125.

    Article  CAS  Google Scholar 

  5. Antons, S. and Beitzke, B. (1996), US patent no. 5,536,879.

  6. Antons, S. (1998), US patent no. 5,731,479.

  7. Antons, S., Tilling, A. S., and Wolters, E. (1999), PCT Intl. Appl. World patent no. 9938838.

  8. Rachmady, W. and Vannice, M. A. (2000), J. Catal. 192, 322–334.

    Article  CAS  Google Scholar 

  9. Santiago, M., Sanchez-Castillo, M., Cortright, R., and Dumesic, J. (2000) J. Catal. 193, 16–28.

    Article  CAS  Google Scholar 

  10. Carnahan, J., Ford, T., Gresham, W., Grigsby, W., and Hager, G. (1955), J. Am. Chem. Soc. 77, 3766–3768.

    Article  CAS  Google Scholar 

  11. Broadbent, H., Campbell, G., Bartley, W., and Johnson, J. (1959), J. Org. Chem. 24, 1847–1854.

    Article  CAS  Google Scholar 

  12. Tahara, K., Tsuji, H., Kimura, H., Okazaki, T., Itoi, Y., Nishiyama, S., Tsuruya, S., and Masai, M. (1996), Catal. Today 28, 267–272.

    Article  CAS  Google Scholar 

  13. Toba, M., Tanaka, S., Niwa, S., Mizukami, F., Koppany, Z., Guczi, L., Cheah, K., and Tang, T. (1999), Appl. Catal A: Gen. 189, 243–250.

    Article  CAS  Google Scholar 

  14. Turek, T., Trimm, D. L., and Cant, N. W. (1994), Catal. Rev. Sci. Eng. 36, 645–683.

    CAS  Google Scholar 

  15. Nagahara, H., Ono, M., and Nakagawa, K. (1989), Jpn. Kokai Tokkyo Koho, Japanese patent no. 01085937 A2 19890330 Heisei.

  16. Corry, A. (1986), British patent no. GB 2169896 A1 19860723.

  17. Iliuta, I., Bulearca, M., and Lazar, L. (1995), Romanian Rev. Chim. (Bucharest) 46 (8), 725–729.

    CAS  Google Scholar 

  18. Mesich, F., Bedford, I., and Dougherty, E. (1971), German patent no. DE 2131696 19711230.

  19. Bianchi, M., Menchi, G., Francalanci, F., Piacenti, F., Matteoli, U., Frediani, P., and Botteghi, C. (1980), J. Organometallic Chem. 188, 109–119.

    Article  CAS  Google Scholar 

  20. Smith, G. and Musoiu, M. (1979), J. Catal. 60, 184–192.

    Article  CAS  Google Scholar 

  21. Osawa, T., Harada, T., and Akira, T. (1990), J. Catal. 121, 7–17.

    Article  CAS  Google Scholar 

  22. Jere, F. T., Miller, D. J., and Jackson, J. E. (2003), Org. Lett. 5, 527–530.

    Article  PubMed  CAS  Google Scholar 

  23. Antons, S., Tilling, A. S., and Wolters, E. (2001), US patent no. 6,310,254.

  24. Sauer, J. C. and Adkins, H. (1948), J. Am. Chem. Soc. 60, 402–406 (first example using a precious metal on carbon catalyst).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan E. Holladay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holladay, J.E., Werpy, T.A. & Muzatko, D.S. Catalytic hydrogenation of glutamic acid. Appl Biochem Biotechnol 115, 857–869 (2004). https://doi.org/10.1385/ABAB:115:1-3:0857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:115:1-3:0857

Index Entries

Navigation