Applied Biochemistry and Biotechnology

, Volume 105, Issue 1–3, pp 87–100 | Cite as

Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass

  • Maria José Negro
  • Paloma Manzanares
  • Ignacio Ballesteros
  • Jose Miguel Oliva
  • Araceli Cabañas
  • Mercedes Ballesteros

Abstract

Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

Index Entries

Poplar ethanol pretreatment steam explosion liquid hot water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    El Bassam, N. (1996), in Renewable Energy: Potential Energy Crops for Europe and the Mediterranean Region, FAO, Rome, Italy, Rev. Technical Series 46, 142–156.Google Scholar
  2. 2.
    Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.CrossRefGoogle Scholar
  3. 3.
    McMillan, J. D. (1994) in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., American Chemical Society, Washington, DC, pp. 292–324.Google Scholar
  4. 4.
    Heitz, M., Capek-Ménard, E., Koeberle, P. G., Gagné, J., and Chornet, E. (1991), Bioresour. Technol. 35, 23–32.CrossRefGoogle Scholar
  5. 5.
    Mes-Hartree, M. and Saddler, J. N. (1983), Biotechnol. Lett. 5, 531–536.CrossRefGoogle Scholar
  6. 6.
    Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.CrossRefGoogle Scholar
  7. 7.
    Duff, S. J. B. and Murray, W. D. (1996), Bioresour. Technol. 55, 1–33.CrossRefGoogle Scholar
  8. 8.
    Wright, J. D. (1998), Chem. Eng. Prog. 84, 62–74.Google Scholar
  9. 9.
    Van Walsum, G. P., Allen, S. G., Spenser, M. J., Laser, M. S., Antal, M. J., and Lynd, L.R. (1996), Appl. Biochem. Biotechnol. 57–58, 157–170.Google Scholar
  10. 10.
    Weil, J., Sarikaya, A., Rau, S. L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., and Ladisch, M. R. (1997), Appl. Biochem. Biotechnol. 68, 21–40.Google Scholar
  11. 11.
    Weil, J. P., Sarikaya, A., Rau, S. L., Goetz, J., Ladish, M., Brewer, M., and Hendrickson, R. (1998), Appl. Biochem. Biotechnol. 73, 1–17.Google Scholar
  12. 12.
    Mok, W. S.-L. and Antal, M. J. (1992), Ind. Eng. Chem. Res. 31, 1157–1161.CrossRefGoogle Scholar
  13. 13.
    Laser, M., Schulman D., Allen, S. G., Lichwa J., Antal, M. J., and Lynd, L. R. (2002), Bioresour. Technol. 81, 33–44.CrossRefGoogle Scholar
  14. 14.
    Allen, S. G., Schulman D., Lichwa, J., and Antal, M.J. (2001), Ind. Eng. Chem. Res. 40, 2934–2941.CrossRefGoogle Scholar
  15. 15.
    Ulbricht, R. J., Northum, S. J., and Thomas, J. A. (1984), Fund. Appl. Toxicol. 4, 843–853.CrossRefGoogle Scholar
  16. 16.
    Carrasco, J. E., Martinez, J. M., Negro, M. J., Manero, J., Mazón, P., Sáez, F., and Martín, C. (1989), in Biomass for Energy and Industry, 5th Conference, vol. 2, Grassi, G., Gosse, G., and Dos Santos, G., eds., Elsevier, Essex, England, UK, pp. 38–44.Google Scholar
  17. 17.
    Ballesteros, I., Oliva, J. M., Navarro, A. A., González, A., Carrasco, J., and Ballesteros, M. (2000), Appl. Biochem. Biotechnol. 84–86, 97–110.CrossRefGoogle Scholar
  18. 18.
    Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P., and Ballesteros, M. (2002), Appl. Biochem. Biotechnol. 98–100, 717–732.CrossRefGoogle Scholar
  19. 19.
    Ballesteros, I., Ballesteros, M., Cabañas, A., Carrasco, J., Martín, C., Negro, M. J., Sáez, F., and Sáez, R. (1991), Appl. Biochem. Biotechnol. 28–29, 307–315.Google Scholar
  20. 20.
    Ruiz, R. and Ehrman, T. (1996), NREL Chemical Analysis and Testing Laboratory Analytical Procedure, No. 002., National Renewable Energy Laboratory, Golden, CO.Google Scholar
  21. 21.
    Templeton, D. and Ehrman, T. (1995), NREL Chemical Analysis and Testing Laboratory Analytical Procedure, No. 003., National Renewable Energy Laboratory, Golden, CO.Google Scholar
  22. 22.
    Weil, J., Brewer, M., Hendrickson, R., Sarikaya, A., and Ladish, M. (1998), Appl. Biochem. Biotechnol. 70–72, 99–111.CrossRefGoogle Scholar
  23. 23.
    Belkacemi, K.; Abatzoglou, N., Overed, R. P., and Chornet, E. (1991), Ind. Eng. Chem. Res. 30, 2416–2425.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Maria José Negro
    • 1
  • Paloma Manzanares
    • 1
  • Ignacio Ballesteros
    • 1
  • Jose Miguel Oliva
    • 1
  • Araceli Cabañas
    • 1
  • Mercedes Ballesteros
    • 1
  1. 1.DER-CIEMATMadridSpain

Personalised recommendations