Stem Cell Reviews

, Volume 1, Issue 1, pp 9–13 | Cite as

On experimental design and discourse in plasticity research



Communication in the stem cell field requires a common understanding of terminology and that “plasticity” phenomena are model- and, perhaps, species-dependent. Plasticity has generally been applied to unexpected differentiative events; will the term cease being useful when these unexpected pathways become recognized as normative? Four pathways of cell plasticity have now been recognized: (1) facultative, intraorgan self-renewing stem cells; (2) reversion of differentiated cells to blastema-like appearances, common in amphibians, perhaps restricted to neoplasia in mammals; (3) cells of one lineage directly changing to differentiation of another lineage cued by microenvironemental signals; (4) cell-cell fusion leading to changes in differentiation of the “incoming” cell in response to cytoplasmic and perhaps nuclear cues. In all of these, “differentiation” must be understood as a reflection of gene expression that is a highly intricate system of parallel, i.e., nonlinear molecular interactions. Present controversies regarding the plasticity of adult stem cells may be explained both by differences in experimental variables and techniques as well as by differing nonscientific, political, and/or polemical needs of investigators and commentators. Some of the variables in transplantation experiments, which are likely to be important in experimental outcome, but rarely addressed in interpretation of data, are the age of the cell donor and of the strain of mice or species used, the isolation technique used to obtain the putative stem cells, and the inherent effects of transgenic markers used to identify the donor or host cells. Also of great importance, but rarely controlled for in experimental design and interpretation, are the reproducibility and sensitivity of methods used to detect the markers of donor origin, the capacity of differentiated tissue to silence transgenes or alter marker expression, and—finally and most importantly—the different signals that influence plasticity phenomena in very different types of injury and regeneration. In different models of injury there are likely to be significant differences in promoting cell localization, proliferation, and predominance of “plasticity pathway,” if any are involved, in determining outcome. Investigators and others who are interested in cell plasticity must always carefully weigh these (and other) different factors in evaluating published experiments, particularly when presented with overly broad and definitive, although they derive from experiments of very different design.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Theise ND. Mayo Clin Proc 2003;78:1004–1009.PubMedGoogle Scholar
  2. 2.
    Theise ND, Wilmut I. Nature 2003;425:21.PubMedCrossRefGoogle Scholar
  3. 3.
    Endo T, Bryant SV, Gardiner DM. Dev Biol 2004;270:135–145.PubMedCrossRefGoogle Scholar
  4. 4.
    Hatch HM, Zheng D, Jorgensen ML, Petersen BE. Cloning Stem Cells 2002;4:339–351.PubMedCrossRefGoogle Scholar
  5. 5.
    Kollet O, Shivtiel S, Chen YQ, et al. J Clin Invest 2003;112:160–169.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang X, Willenbring H, Akkari Y, et al. Nature 2003;422:897–901.PubMedCrossRefGoogle Scholar
  7. 7.
    Vassilopoulos G, Russell DW. Curr Opin Genet Dev 2003;13:480–485.PubMedCrossRefGoogle Scholar
  8. 8.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Nature 2003;425:968–973.PubMedCrossRefGoogle Scholar
  9. 9.
    Blau HM, Chiu CP, Webster C. Cell 1983;32:1171–1180.PubMedCrossRefGoogle Scholar
  10. 10.
    Chiu CP, Blau HM. Cell 1984;37:879–887.PubMedCrossRefGoogle Scholar
  11. 11.
    Pavlath GK, Blau HM. J Cell Biol 1986;102:124–130.PubMedCrossRefGoogle Scholar
  12. 12.
    Spees JL, Olson SD, Ylostalo J, et al. Proc Natl Acad Sci USA 2003;100:2397–2402.PubMedCrossRefGoogle Scholar
  13. 13.
    Theise ND, Krause DS. Blood Cells Mol Dis 2001;27:625–631.PubMedCrossRefGoogle Scholar
  14. 14.
    Theise ND, Krause DS. Leukemia 2002;16:542–548.PubMedCrossRefGoogle Scholar
  15. 15.
    Theise ND. CR Biol 2002;325:1039–1043.CrossRefGoogle Scholar
  16. 16.
    Blau HM, Pavlath GK, Hardeman EC, et al. Science 1985;230:758–766.PubMedCrossRefGoogle Scholar
  17. 17.
    Krause DS, Theise ND, Collector MI, et al. Cell 2001;105:369–377.PubMedCrossRefGoogle Scholar
  18. 18.
    Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Science 2002;297:2256–2259.PubMedCrossRefGoogle Scholar
  19. 19.
    Theise ND, Krause DS, Sharkis S. Science 2003;299:1317;1317 author reply.PubMedCrossRefGoogle Scholar
  20. 20.
    Carlo-Stella C, Di Nicola M, Milani R, et al. Exp Hematol 2004;32:171–178.PubMedCrossRefGoogle Scholar
  21. 21.
    Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Blood 2004;103:1662–1668.PubMedCrossRefGoogle Scholar
  22. 22.
    Dewald O, Ren G, Duerr GD, et al. Am J Pathol 2004;164:665–677.PubMedGoogle Scholar
  23. 23.
    Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Nature 2002;418:41–49.PubMedCrossRefGoogle Scholar
  24. 24.
    Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Nat Cell Biol 2004;6:532–539.PubMedCrossRefGoogle Scholar
  25. 25.
    Verfaillie CM. Trends Cell Biol 2002;12:502–508.PubMedCrossRefGoogle Scholar
  26. 26.
    Ianus A, Holz GG, Theise ND, Hussain MA. J Clin Invest 2003;111:843–850.PubMedCrossRefGoogle Scholar
  27. 27.
    Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS. Science 2004;305:90–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ. Biochem Biophys Res Commun 1999;260:712–717.PubMedCrossRefGoogle Scholar
  29. 29.
    Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Nature 2004;428:668–673.PubMedCrossRefGoogle Scholar
  30. 30.
    Grant MB, Caballero S, Brown GA, et al. Adv Exp Med Biol 2003;522:37–45.PubMedGoogle Scholar
  31. 31.
    Galiano RD, Tepper OM, Pelo CR, et al. Am J Pathol 2004;164:1935–1947.PubMedGoogle Scholar
  32. 32.
    Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Bull Exp Biol Med 2003;136:192–195.PubMedCrossRefGoogle Scholar
  33. 33.
    Crosby JR, Kaminski WE, Schatteman G, et al. Circ Res 2000;87:728–730.PubMedGoogle Scholar
  34. 34.
    Campbell JH, Efendy JL, Han C, Girjes AA, Campbell GR. J Vasc Res 2000;37:364–371.PubMedCrossRefGoogle Scholar
  35. 35.
    Willenbring H, Bailey AS, Foster M, et al. Nat Med 2004;10:744–748.PubMedCrossRefGoogle Scholar
  36. 36.
    Willenbring H, Grompe M. J Assist Reprod Genet 2003;20:393,394.PubMedCrossRefGoogle Scholar
  37. 37.
    Newsome PN, Johannessen I, Boyle S, et al. Gastroenterology 2003;124:1891–1900.PubMedCrossRefGoogle Scholar
  38. 38.
    Ishikawa F, Drake CJ, Yang S, et al. Ann NY Acad Sci 2003;996:174–185.PubMedCrossRefGoogle Scholar
  39. 39.
    Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK. Hepatology 1998;27:433–445.PubMedCrossRefGoogle Scholar
  40. 40.
    Petersen BE, Bowen WC, Patrene KD, et al. Science 1999;284:1168–1170.PubMedCrossRefGoogle Scholar
  41. 41.
    Theise ND, Nimmakayalu M, Gardner R, et al. Hepatology 2000;32:11–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Theise ND. Haematologica 2003;88:361,362.PubMedGoogle Scholar
  43. 43.
    Wulf GG, Luo KL, Jackson KA, Brenner MK, Goodell MA. Haematologica 2003;88:368–378.PubMedGoogle Scholar
  44. 44.
    Factor VM, Radaeva SA. Am J Pathol 1994;145:409–422.PubMedGoogle Scholar
  45. 45.
    Bhathal PS, Gall JA. Liver 1985;5:311–325.PubMedGoogle Scholar
  46. 46.
    Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Proc Natl Acad Sci USA 2003;100(Suppl 1):11881–11888.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  1. 1.Department of Pathology and MedicineBeth Israel Medical Center and Albert Einstein College of MedicineNew York
  2. 2.Division of Digestive DiseasesNew York

Personalised recommendations