Advertisement

NeuroMolecular Medicine

, Volume 8, Issue 3, pp 337–351 | Cite as

Cyclooxygenase-2 is involved in HIV-1 tat-induced inflammatory responses in the brain

  • Govinder Flora
  • Hong Pu
  • Bernhard Hennig
  • Michal Toborek
Original Article

Abstract

Cyclooxygenase (COX)-2, a rate-limiting enzyme for prostanoid synthesis, can be involved in inflammatory-mediated cytotoxicity. Although the contribution of COX-2 to peripheral inflammation is well understood, its role in brain inflammation is not fully recognized. In particular, COX-2 involvement in inflammatory responses induced by HIV proteins in the central nervous system is not known. Therefore, the present study focused on COX-2 expression and its role in modulating the expression of brain inflammatory-related genes following exposure to the HIV-1 transactivating protein Tat. Intrahippocampal injections of Tat induced dose-dependent upregulation of COX-2 mRNA and protein levels in C57BL/6 mice. COX-2 immunoreactivity was primarily localized in microglial cells and astrocytes. Tat-induced COX-2 expression was partially prevented by pyrrolidine dithiocarbamate, a potent antioxidant and an inhibitor of the transcription factor, nuclear factor κB. Most importantly, administration of the COX-2 inhibitor NS-398 attenuated Tat-mediated upregulation of mRNA and protein expression of inflammatory mediators, such as monocyte chemoattractant protein-1, interleukin-1β, tumor necrosis factor-α, and inducible nitric oxide synthase. Moreover, treatment with NS-398 significantly attenuated Tat-induced activation of microglial cells. These results provide evidence that COX-2 overexpression can modulate induction of brain inflammatory mediators in response to HIV-1 Tat protein. Such alterations may play an important role in the development of brain inflammatory reactions in HIV-infected patients and contribute to the development of neurological complications in the course of HIV-1 infection.

Index Entries

HIV-1 HIV-associated dementia Tat inflammation NF-κB COX CNS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beg A. A., Finco T. S., Nantermet P. V., and Baldwin A. S. Jr. (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol. Cell. Biol. 13, 3301–3310.PubMedGoogle Scholar
  2. Blanco A. M., Pascual M., Valles S. L., and Guerri C. (2004) Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B. Neuroreport 15, 681–685.PubMedCrossRefGoogle Scholar
  3. Bruce-Keller A. J., Barger S. W., Moss N. I., Pham J. T., Keller J. N., and Nath A. (2001) Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J. Neurochem. 78, 1315–1324.PubMedCrossRefGoogle Scholar
  4. Bruce-Keller A. J., Chauhan A., Dimavuga F. O., Gee J., Keller J. N., and Nath A. (2003) Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J. Neurosci. 23, 8417–8422.PubMedGoogle Scholar
  5. Caughey G. E., Pouliot M., Cleland L. G., and James M. J. (1997) Regulation of tumor necrosis factor-alpha and IL-1 beta synthesis by thromboxane A2 in nonadherent human monocytes. J. Immunol. 158, 351–358.PubMedGoogle Scholar
  6. Chauhan A., Turchan J., Pocernich C. et al. (2003) Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survivol but induces potent neurotoxicity at distant sites via axonal transport. J. Biol. Chem. 278, 13512–13519.PubMedCrossRefGoogle Scholar
  7. Corasamti M. T., Bellizzi C., Russo R., Colica C., Amantea D., and Di Renzo G. (2003) Caspase-1 inhibitors abolish deleterious enhancement of COX-2 expression induced by HIV-1 gp 120 in human neuroblastoma cells. Toxicol. Lett. 139, 213–219.CrossRefGoogle Scholar
  8. D'Aversa T. G., Yu K. O., and Berman J. W. (2004) Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat. J. Neurovirol. 10, 86–97.PubMedCrossRefGoogle Scholar
  9. Engblom D., Ek M., Saha S., Ericsson-Dahlstrand A., Jakobsson P. J., and Blomqvist A. (2002) Prostaglandins as inflammatory messengers across the blood-brain barrier. J. Mol. Med. 80, 5–15.PubMedCrossRefGoogle Scholar
  10. Ensoli B., Buonaguro L., Barillari G., et al. (1993) Release, up take, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67, 277–287.PubMedGoogle Scholar
  11. Feuerstein G. Z., Wang X., and Barone F. C. (1997) Inflammatory gene expression in cerebral ischemia and trauma. Potential new therapeutic targets. Ann. N. Y. Acad. Sci. 825, 179–193.PubMedCrossRefGoogle Scholar
  12. Flora G., Lee Y. W., Nath A., Hennig B., Marages W., and Toborek M. (2003) Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp. Neurol. 179, 60–70.PubMedCrossRefGoogle Scholar
  13. Futaki N., Yoshikawa K., Hamasaka Y., et al. (1993) NS-398, a novel non-steroidal anti-inflammatory drug with potent analgesic and antipyretic effects, which causes minimal stomach lesions. Gen. Pharmacol. 24, 105–110.PubMedGoogle Scholar
  14. Griffin D. E., Wesselingh S. L., and McArthur J. C. (1994) Elevated centralnervous system prostaglandins in human immunodeficiency virus-associated dementia. Ann. Neurol. 35, 592–597.PubMedCrossRefGoogle Scholar
  15. Hara K., Kong D. L., Sharp F. R., and Weinstein P. R. (1998) Effect of selective inhibition of cyclooxygenase 2 on temporary focal cerebral ischemia in rats. Neurosci. Lett. 256, 53–56.PubMedCrossRefGoogle Scholar
  16. Haughey N. J., and Mattson M. P. (2002) Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp 120. J. Acquir. Immune Derv. Syndr. 31(Suppl 2), S55-S61.Google Scholar
  17. Hoozemans J. J., Veerhuis R., Janssen I., van Elk E. H. Rozemuller A. J., and Eikelenboom P. (2002) The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia: implications for Alzheimer's disease. Brain Res. 951, 218–226.PubMedCrossRefGoogle Scholar
  18. Hudson L., Liu J., Nath A., et al. (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J. Neurovirol. 6, 145–155.PubMedGoogle Scholar
  19. Huigen M. C., Kamp W., and Nottet H. S. (2004) Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection. Eur. J. Clin. Invest. 34, 57–66.PubMedCrossRefGoogle Scholar
  20. Hurley S. D., Olschowka J. A., and O'Banion M. K. (2002) Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J. Neurotrauma 19, 1–15.PubMedCrossRefGoogle Scholar
  21. Israel N. and Gougerot-Pocidalo M. A. (1997) Oxidativestress in human immunodeficiency virus infection. Cell. Mol. Life Sci. 53, 864–870.PubMedCrossRefGoogle Scholar
  22. Khan N. A., Di Cello F., Nath A., and Kim K. S. (2003) Human immunodeficiency virus type 1 tat-mediated cytotoxicity of human brain microvascular endothelial cells. J. Neurovirol. 9, 584–593.PubMedGoogle Scholar
  23. Khurdayan V. K., Buch S., El-Hage N., et al. (2004) Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. Eur. J. Neurosci. 19, 3171–3182.PubMedCrossRefGoogle Scholar
  24. Kim T. A., Avraham H. K., Koh Y. H., Jiang S., Park I. W., and Avraham S. (2003) HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J. Immunol. 170, 2629–2637.PubMedGoogle Scholar
  25. Kruman I. I., Nath A., and Mattson M. P. (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol. 154, 276–288.PubMedCrossRefGoogle Scholar
  26. Kruman I. I., Nath A., Maragos W. F., et al. (1999) Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. Am. J. Pathol. 155, 39–46.PubMedGoogle Scholar
  27. Kyrkanides S., Moore A. H., Olschowka J. A., et al. (2002) Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res. Mol. Brain Res. 106, 159–169.CrossRefGoogle Scholar
  28. Liu Q. N., Reddy S., Sayre J. W., Pop V., Graves M. C., and Fiala M. (2001) Essential role of HIV type 1-infected and cyclooxygenase 2-activated macrophages and T cells in HIV type 1 myocarditis. AIDS Res. Hum. Retroviruses 17, 1423–1433.PubMedCrossRefGoogle Scholar
  29. Liu X., Jana M., Dasgupta S., et al. (2002) Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide synthase in human astroglia. J. Biol. Chem. 277, 39,312–39,319.Google Scholar
  30. Ma M. and Nath A. (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J. Virol. 71, 2495–2499.PubMedGoogle Scholar
  31. Madrigal J. L., Garcia-Bueno B., Moro M. A., Lizasoain L., Lorenzo P., and Leza J. C. (2003) Relationship between cyclooxygenase-2 and nitric oxide synthase-2 in rat cortex after stress. Eur. J. Neurosci. 18, 1701–1705.PubMedCrossRefGoogle Scholar
  32. Madrigal J. L., Caso J. R., de Cristobal J., et al. (2003) Effect of subacute and chronic immobilisation stress on the outcome of permanent focal cerebral ischaemia in rats. Brain Res. 979, 137–145.PubMedCrossRefGoogle Scholar
  33. Magnuson D. S., Knudsen B. E., Geiger J. D., Brownstone R. M., and Nath A. (1995) Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann. Neurol. 37, 373–380.PubMedCrossRefGoogle Scholar
  34. Masferrer J. L., Zweifel B. S., Manning P. T., et al. (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. USA 91, 3228–3232.PubMedCrossRefGoogle Scholar
  35. Matzen K., Dirkx A. E., oude Egbrink M. G., et al. (2004) HIV-1 Tat increases the adhesion of monocytes and T-cells to the endothelium in vitro and in vivo: implications for AIDS-associated vasculopathy. Virus Res. 104, 145–155.PubMedCrossRefGoogle Scholar
  36. Minghetti L., Visentin S., Patrizio M., Franchini L., Ajmone-Cat M. A., and Levi G. (2004) Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions. Neurochem. Res. 29, 965–978.PubMedCrossRefGoogle Scholar
  37. Monaco C. and Paleolog E. (2004) Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc. Res. 61, 671–682.PubMedCrossRefGoogle Scholar
  38. Nabel G. and Baltimore D. (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713.PubMedCrossRefGoogle Scholar
  39. Nath A., Conant K., Chen P., Scott C., and Major E. O. (1999) Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J. Biol. Chem. 274, 17,098–17,102.CrossRefGoogle Scholar
  40. Nath A., Psooy K., Martin C., et al. (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J. Virol. 70, 1475–1480.PubMedGoogle Scholar
  41. New D. R., Ma M., Epstein L. G., Nath A., and Gelbard H. A. (1997) Human immunodeficiency virus type 1 Tat protein induces death by apoptosis in primary human neuron cultures. J. Neurovirol. 3, 168–173.PubMedCrossRefGoogle Scholar
  42. Nogawa S., Zhang F., Ross M. E., and Iadecola C. (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci. 17, 2746–2755.PubMedGoogle Scholar
  43. Nottet H. S. (1999) Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood-crain barrier function. J. Neurovirol. 5, 659–669.PubMedGoogle Scholar
  44. Pereira C. F., Boven L. A., Middel J., Verhoef J., and Nottet H. S. (2000) Induction of cyclooxygenase-2 expression during HIV-1-infected monocyte-derived macrophage and human brain microvascular endothelial cell interactions. J. Leukoc. Biol. 68, 423–428.PubMedGoogle Scholar
  45. Petito C. K., Roberts B., Cantando J. D., Rabinstein A., and Duncan R. (2001) Hippocampal injury and alterations in neuronal chemokine co-receptor expression in patients with AIDS. J. Neuropathol. Exp. Neurol. 60, 377–385.PubMedGoogle Scholar
  46. Poligone B. and Baldwin A. S. (2001) Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. J. Biol. Chem. 276, 38,658–38,664.CrossRefGoogle Scholar
  47. Pu H., Tian J., Flora G., et al. (2003) HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol. Cell. Neurosci. 24, 224–237.PubMedCrossRefGoogle Scholar
  48. Rose J. W., Hill K. E., Watt H. E., and Carlson N. G. (2004) Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J. Neuroimmunol. 149, 40–49.PubMedCrossRefGoogle Scholar
  49. Shor Posner G. (2000) Cognitive function in HIV-1-infected drug users. J. Acquir. Immune. Defic. Syndr. 25(Suppl 1), S70-S73.PubMedCrossRefGoogle Scholar
  50. Sugimoto K. and Iadecola C. (2003) Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia. Brain Res. 960, 273–276.PubMedCrossRefGoogle Scholar
  51. Tanabe T. and Tohnai N. (2002) Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat. 68–69, 95–114.PubMedCrossRefGoogle Scholar
  52. Toborek M., Lee Y. W., Kaiser S., and Hennig B. (2002) Measurement of inflammatory properties of fatty acids in human endothelial cells. Methods Enzymol. 352, 198–219.PubMedCrossRefGoogle Scholar
  53. Toborsk M., Lee, Y. W., Pu, H., et al. (2003) HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J. Neurochem. 84, 169–179.CrossRefGoogle Scholar
  54. Torres-Munoz J., Stockton, P., Tacoronte N., Roberts B., Maronpot R. R., and Petito C. K. (2001) Detection of HIV-1 gene sequences in hippocampal neurons isolated from postmortem AIDS brains by laser capture microdissection. J. Neuropathol. Exp. Neurol. 60, 885–892.PubMedGoogle Scholar
  55. Valle L. D., Croul S., Morgello S., Amini S., Rappaport J., and Khalili K. (2000) Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy. J. Neurovirol. 6, 221–228.PubMedGoogle Scholar
  56. Vives E., Richard J. P., Rispal C., and Lebleu B. (2003) TAT peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci. 4, 125–132.PubMedCrossRefGoogle Scholar
  57. Warner T. D. and Mitchell J. A. (2004) Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J. 18, 790–804.PubMedCrossRefGoogle Scholar
  58. Woodman S. E., Benveniste E. N., Nath A., and Berman J. W. (1999) Human immunodeficiency virus type 1 TAT protein induces adhesion molecule expression in astrocytes. J. Neurovirol 5, 678–684.PubMedGoogle Scholar
  59. Wang T., Qin L., Liu B., et al. (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J. Neurochem. 88, 939–947.PubMedCrossRefGoogle Scholar
  60. Wu K. K. (2003) Control of COX-2 and iNOS gene expressions by aspirin and salicylate. Thromb. Res. 110, 273–276.PubMedCrossRefGoogle Scholar
  61. Wu R. F., Gu Y., Xu Y. C., Mitola S., Bussolino F., and Terada L. S. (2004) Human immunodeficiency virus type 1 Tat regulates endothelial cell actin cytoskeletal dynamics through PAK1 activation and oxidant production. J. Virol. 78, 779–789.PubMedCrossRefGoogle Scholar
  62. Zink W. E., Anderson E., Boyle J., et al. (2002) Impaired spatial cognition and synaptic potentiation in a murine model of human immunodeficiency virus type 1 encephalitis. J. Neurosci. 22, 2096–2105.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Govinder Flora
    • 1
  • Hong Pu
    • 1
  • Bernhard Hennig
    • 2
  • Michal Toborek
    • 1
  1. 1.Molecular Neuroscience and Vascular Biology Laboratory, Department of SurgeryUniversity of KentuckyLexington
  2. 2.College of AgricultureUniversity of KentuckyLexington

Personalised recommendations