NeuroMolecular Medicine

, Volume 7, Issue 3, pp 255–264 | Cite as

T-cells in alzheimer’s disease

  • Terrence Town
  • Jun Tan
  • Richard A. Flavell
  • Mike MullanEmail author
Review Article


Alzheimer’s disease (AD) is the most common dementing illness and is pathologically characterized by deposition of the 40–42 amino acid peptide, amyloid-β (Aβ), as senile plaques. It is well documented that brain inflammatory mechanisms mediated by reactive glia are activated in response to Aβ plaques. A number of reports further suggest that T-cells are activated in AD patients, and that these cells exist both in the periphery and as infiltrates in the brain. We explore the potential role of T-cells in the AD process, a controversial area, by reviewing reports that show disturbed activation profiles and/or altered numbers of various subsets of T-cells in the circulation as well as in the AD brain parenchyma and in cerebral amyloid angiopathy. We also discuss the recent Aβ immunotherapy approach vis-à-vis the activated, autoaggressive T-cell infiltrates that contributed to aseptic meningoencephalitis in a small percentage of patients, and present possible alternative approaches that may be both efficacious and safe. Finally, we explore the use of mouse models of AD as a system within which to definitively test the possible contribution of T-cells to AD pathogenesis.

Index Entries

Dementia lymphocyte leukocyte aging brain amyloid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders K. H., Wang Z. Z., Kornfeld M., et al. (1997) Giant cell arteritis in association with cerebral amyloid angiopathy: immunohistochemical and molecular studies. Hum. Pathol. 28, 1237–1246.PubMedCrossRefGoogle Scholar
  2. Archambault A. S., Sim J., Gimenez M. A., and Russell J. H. (2005) Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur. J. Immunol. 35, 1076–1085.PubMedCrossRefGoogle Scholar
  3. Baril L., Nicolas L., Croisile B., et al. (2004) Immune response to Abeta-peptides in peripheral blood from patients with Alzheimer’s disease and control subjects. Neurosci. Lett. 355, 226–230.PubMedCrossRefGoogle Scholar
  4. Becker K. J., McCarron R. M., Ruetzler C., et al. (1997) Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 94, 10,873–10,878.CrossRefGoogle Scholar
  5. Bongioanni P., Boccardi B., Borgna M., Castagna M., and Mondino C. (1997) T-cell interferon gamma binding in patients with dementia of the Alzheimer type. Arch. Neurol. 54, 457–462.PubMedGoogle Scholar
  6. Cribbs D. H., Ghochikyan A., Vasilevko V., et al. (2003) Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. Int. Immunol. 15, 505–514.PubMedCrossRefGoogle Scholar
  7. Das P., Murphy M. P., Younkin L. H., Younkin S. G., and Golde T. E. (2001) Reduced effectiveness of Abeta1-42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol. Aging 22, 721–727.PubMedCrossRefGoogle Scholar
  8. Dong C. and Flavell R. A. (2001) Th1 and Th2 cells. Curr. Opin. Hematol. 8, 47–51.PubMedCrossRefGoogle Scholar
  9. Dutton R. W., Bradley L. M., and Swain S. L. (1998) T cell memory. Annu. Rev. Immunol. 16, 201–223.PubMedCrossRefGoogle Scholar
  10. Ellis R. J., Olichney J. M., Thal L. J., et al. (1996) Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV. Neurology 46, 1592–1596.PubMedGoogle Scholar
  11. Eng J. A., Frosch M. P., Choi K., Rebeck G. W., and Greenberg S. M. (2004) Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann. Neurol. 55, 250–256.PubMedCrossRefGoogle Scholar
  12. Furlan R., Brambilla E., Sanvito F., et al. (2003) Vaccination with amyloid-beta peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain 126, 285–291.PubMedCrossRefGoogle Scholar
  13. Gruden M. A., Davudova T. B., Malisauskas M., et al. (2004) Autoimmune responses to amyloid structures of Abeta(25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 18, 165–171.PubMedCrossRefGoogle Scholar
  14. Hickey W. F. (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36, 118–124.PubMedCrossRefGoogle Scholar
  15. Huberman M., Sredni B., Stern L., Kott E., and Shalit F. (1995) IL-2 and IL-6 secretion in dementia: correlation with type and severity of disease. J. Neurol. Sci. 130, 161–164.PubMedCrossRefGoogle Scholar
  16. Hyman B. T., Smith C., Buldyrev I., et al. (2001) Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann. Neurol. 49, 808–810.PubMedCrossRefGoogle Scholar
  17. Janus C., Pearson J., McLaurin J., et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408, 979–982.PubMedCrossRefGoogle Scholar
  18. Jones T. B., Basso D. M., Sodhi A., et al. (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J. Neurosci. 22, 2690–2700.PubMedGoogle Scholar
  19. Kim H. D., Cao Y., Kong F. K., et al. (2005) Induction of a Th2 immune response by co-administration of recombinant adenovirus vectors encoding amyloid beta-protein and GM-CSF. Vaccine 23, 2977–2986.PubMedCrossRefGoogle Scholar
  20. Lafaille J. J. (1998) The role of helper T cell subsets in autoimmune diseases. Cytokine Growth Factor Rev. 9, 139–151.PubMedCrossRefGoogle Scholar
  21. Lemere C. A., Maron R., Selkoe D. J., and Weiner H. L. (2001) Nasal vaccination with beta-amyloid peptide for the treatment of Alzheimer’s disease. DNA Cell Biol. 20, 705–711.PubMedCrossRefGoogle Scholar
  22. Lemere C. A., Maron R., Spooner E. T., et al. (2000) Nasal A beta treatment induces anti-A beta antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann. NY. Acad. Sci. 920, 328–331.PubMedCrossRefGoogle Scholar
  23. Linton P. J., Haynes L., Klinman N. R., and Swain S. L. (1996) Antigen-independent changes in naive CD4 T cells with aging. J. Exp. Med. 184, 1891–1900.PubMedCrossRefGoogle Scholar
  24. Lombardi V. R., Fernandez-Novoa L., Etcheverria I., Seoane S., and Cacabelos R. (2004) Association between APOE epsilon4 allele and increased expression of CD95 on T cells from patients with Alzheimer’s disease. Methods Find. Exp. Clin. Pharmacol. 26, 523–529.PubMedCrossRefGoogle Scholar
  25. Lombardi V. R., Garcia M., Rey L., and Cacabelos R. (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s Disease (AD) individuals. J. Neuroimmunol. 97, 163–171.PubMedCrossRefGoogle Scholar
  26. Lopez O. L., Rabin B. S., and Huff F. J. (1991) Serum auto-antibodies in Alzheimer’s disease. Acta Neurol. Scand. 84, 441–444.PubMedCrossRefGoogle Scholar
  27. McGeer E. G. and McGeer P. L. (1999a) Brain inflammation in Alzheimer disease and the therapeutic implications. Curr. Pharm. Des. 5, 821–836.PubMedGoogle Scholar
  28. McGeer P. L. and McGeer E. G. (1999b) Inflammation of the brain in Alzheimer’s disease: implications for therapy. J. Leukoc. Biol. 65, 409–415.PubMedGoogle Scholar
  29. McGeer P. L. and McGeer E. G. (2002) Innate immunity, local inflammation, and degenerative disease. Sci. Aging Knowledge Environ. 2002(29), re3.Google Scholar
  30. Moalem G., Leibowitz-Amit R., Yoles E., Mor F., Cohen I. R., and Schwartz M. (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55.PubMedCrossRefGoogle Scholar
  31. Monsonego A., Imitola J., Zota V., Oida T., and Weiner H. L. (2003a) Microglia-mediated nitric oxide cytotoxicity of T cells following amyloid beta-peptide presentation to Th1 cells. J. Immunol. 171, 2216–2224.PubMedGoogle Scholar
  32. Monsonego A., Maron R., Zota V., Selkoe D. J., and Weiner H. L. (2001) Immune hyporesponsiveness to amyloid beta-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 98, 10273–10278.PubMedCrossRefGoogle Scholar
  33. Monsonego A., Zota V., Karni A, et al. (2003b) Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422.PubMedCrossRefGoogle Scholar
  34. Morgan D., Diamond D. M., Gottschall P. E., et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408, 982–985.PubMedCrossRefGoogle Scholar
  35. Mruthinti S., Buccafusco J. J., Hill W. D., et al. (2004) Autoimmunity in Alzheimer’s disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol. Aging 25, 1023–1032.PubMedCrossRefGoogle Scholar
  36. Myagkova M. A., Gavrilova S. I., Lermontova N. N., et al. (2003) Content of autoantibodies to bradykinin and beta-amyloid(1–42) as a criterion for biochemical differences between Alzheimer’s dementias. Bull. Exp. Biol. Med. 136, 49–52.PubMedCrossRefGoogle Scholar
  37. Nagelkerken L. (1998) Role of Th1 and Th2 cells in autoimmune demyelinating disease. Braz. J. Med. Biol. Res. 31, 55–60.PubMedCrossRefGoogle Scholar
  38. Nath A., Hall E., Tuzova M., et al. (2003) Autoantibodies to amyloid beta-peptide (A beta) are increased in Alzheimer’s disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromol. Med. 3, 29–39.CrossRefGoogle Scholar
  39. Nicoll J. A., Wilkinson D., Holmes C., Steart P., Markham H., and Weller R. O. (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat. Med. 9, 448–452.PubMedCrossRefGoogle Scholar
  40. Peterson D. A., DiPaolo R. J., Kanagawa O., and Unanue E. R. (1999) Quantitative analysis of the T cell repertoire that escapes negative selection. Immunity 11, 453–462.PubMedCrossRefGoogle Scholar
  41. Pfeifer M., Boncristiano S., Bondolfi L., et al. (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298, 1379.PubMedCrossRefGoogle Scholar
  42. Qu B., Rosenberg R. N., Li L., Boyer P. J., and Johnston S. A. (2004) Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease. Arch. Neurol. 61, 1859–1864.PubMedCrossRefGoogle Scholar
  43. Rogers J., Luber-Narod J., Styren S. D., and Civin W. H. (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9, 339–349.PubMedCrossRefGoogle Scholar
  44. Rogers J., Webster S., Lue L. F., et al. (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging 17, 681–686.PubMedCrossRefGoogle Scholar
  45. Romagnani S. (1992) Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int. Arch. Allergy Immunol. 98, 279–285.PubMedCrossRefGoogle Scholar
  46. Romagnani S. (2000) T-cell subsets (Th1 versus Th2) Ann. Allergy Asthma Immunol. 85, 9–18; quiz 18, 21.PubMedCrossRefGoogle Scholar
  47. Schenk D., Barbour R., Dunn W., et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177.PubMedCrossRefGoogle Scholar
  48. Scolding N. J., Joseph F., Kirby P. A., et al. (2005) Abetarelated angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 128, 500–515.PubMedCrossRefGoogle Scholar
  49. Shalit F., Sredni B., Stern L., Kott E., and Huberman M. (1994) Elevated interleukin-6 secretion levels by mononuclear cells of Alzheimer’s patients. Neurosci. Lett. 174, 130–132.PubMedCrossRefGoogle Scholar
  50. Tan J., Town T., Abdullah L., et al. (2002a) CD45 isoform alteration in CD4+ T cells as a potential diagnostic marker of Alzheimer’s disease. J. Neuroimmunol. 132, 164–172.PubMedCrossRefGoogle Scholar
  51. Tan J., Town T., Crawford F., et al. (2002b) Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat. Neurosci. 5, 1288–1293.PubMedCrossRefGoogle Scholar
  52. Tan J., Town T., and Mullan M. (2002c) CD40-CD40L interaction in Alzheimer’s disease. Curr. Opin. Pharmacol. 2, 445–451.PubMedCrossRefGoogle Scholar
  53. Tan J., Town T., Paris D., et al. (1999a) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286, 2352–2355.PubMedCrossRefGoogle Scholar
  54. Tan J., Town T., Suo Z., et al. (1999b) Induction of CD40 on human endothelial cells by Alzheimer’s beta-amyloid peptides. Brain Res. Bull. 50, 143–148.PubMedCrossRefGoogle Scholar
  55. Tarkowski E., Wallin A., Regland B., Blennow K., and Tarkowski A. (2001) Local and systemic GM-CSF increase in Alzheimer’s disease and vascular dementia. Acta. Neurol. Scand. 103, 166–174.PubMedCrossRefGoogle Scholar
  56. Togo T., Akiyama H., Iseki E., et al. (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 124, 83–92.PubMedCrossRefGoogle Scholar
  57. Town T., Tan J., and Mullan M. (2001a) CD40 signaling and Alzheimer’s disease pathogenesis. Neurochem. Int. 39, 371–380.PubMedCrossRefGoogle Scholar
  58. Town T., Tan J., Sansone N., Obregon D., Klein T., and Mullan M. (2001b) Characterization of murine immunoglobulin G antibodies against human amyloid-beta1-42 Neurosci. Lett. 307, 101–104.PubMedCrossRefGoogle Scholar
  59. Town T., Vendrame M., Patel A., et al. (2002) Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer’s beta-amyloid(1–42). J. Neuroimmunol. 132, 49–59.PubMedCrossRefGoogle Scholar
  60. Townsend K. P., Town T., Mori T., et al. (2005) CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid beta-peptide. Eur. J. Immunol. 35, 901–910.PubMedCrossRefGoogle Scholar
  61. Weiner H. L., Lemere C. A., Maron R., et al. (2000) Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann. Neurol. 48, 567–579.PubMedCrossRefGoogle Scholar
  62. Wyss-Coray T., Lin C., Yan F., et al. (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat. Med. 7, 612–618.PubMedCrossRefGoogle Scholar
  63. Yamada M., Itoh Y., Shintaku M., et al. (1996) Immune reactions associated with cerebral amyloid angiopathy. Stroke 27, 1155–1162.PubMedGoogle Scholar
  64. Zhang J., Wu X., Qin C., et al. (2003) A novel recombinant adeno-associated virus vaccine reduces behavioral impairment and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 14, 365–379.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Terrence Town
    • 1
  • Jun Tan
    • 2
  • Richard A. Flavell
    • 1
    • 3
  • Mike Mullan
    • 4
    Email author
  1. 1.Section of ImmunobiologyYale University School of MedicineNew Haven
  2. 2.Neuroimmunology Laboratory, Department of PsychiatryUniversity of South FloridaTampa
  3. 3.Howard Hughes Medical InstituteNew Haven
  4. 4.Roskamp InstituteSarasota

Personalised recommendations