NeuroMolecular Medicine

, Volume 5, Issue 2, pp 119–131

Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice

  • Stefan Lorenzl
  • Noel Calingasan
  • Lichuan Yang
  • David S. Albers
  • Shuei Shugama
  • Jason Gregorio
  • H. W. Krell
  • Jason Chirichigno
  • Tong Joh
  • M. Flint Beal
Original Article

Abstract

Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of degrading components of the extracellular matrix. Recent evidence has implicated MMPs in the pathogenesis of neurodegenerative diseases as Alzheimer’s disease and amyotrophic lateral sclerosis. In this study, we investigated the involvement of MMP-9 (gelatinase B) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease using zymography, immunohistochemistry, and Western blot analysis. The activity of MMP-9 was upregulated at 3 h after MPTP injection in the striatum and after 24 h in the substantia nigra. Although MMP-9 expression decreased in the striatum by 72 h, it remained elevated in the substantia nigra compared to controls up to 7 d after MPTP administration. Immunohistochemistry showed that neurons and microglia are the source of MMP-9 expression after MPTP administration to mice. Treatment with a hydroxamate-based MMP inhibitor, Ro 28-2653 significantly reduced dopamine depletion and loss of tyrosine hydroxylase immunoreactive neurons in the substantia nigra pars compacta. MMP-9 expression as measured via zymography in the substantia nigra was reduced by the MMP inhibitor. These results indicate that MMP-9 is induced after MPTP application in mice and that pharmacologic inhibition of MMPs protects against MPTP neurotoxicity.

Index Entries

Matrix metalloproteinases zymography MPTP Parkinson’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asahi M., Sumii T., Fini M. E., Itohara S., and Loh E. (2001) Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. Neuroreport 12, 3003–3007.PubMedCrossRefGoogle Scholar
  2. Asahina M., Yoshiyama Y., and Hattori T. (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin. Neuropathol. 20, 60–63.PubMedGoogle Scholar
  3. Beal M. F. (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366.PubMedCrossRefGoogle Scholar
  4. Beal M. F. (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol. 44(3 Suppl. 1), S110-S114.PubMedGoogle Scholar
  5. Beuche W., Yushchenko M., Mader M., Maliszewska M., Felgenhauer K., and Weber F. (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11, 3419–3422.PubMedCrossRefGoogle Scholar
  6. Clark A., Krekoski C. A., Bou S. S., Chapman K. R., and Edwards D. R. (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci. Lett. 238, 53–55.PubMedCrossRefGoogle Scholar
  7. Coggeshall R. E. (1992) Aconsideration of neural counting methods. Trends Neurosci. 15, 9–13.PubMedCrossRefGoogle Scholar
  8. Date I., Felton D. L., and Felton S. Y. (1990) Long-term effect of MPTP in the mouse brain in relation to ageing: neurochemical and immunocytochemical analysis. Brain Res. 519, 266–276.PubMedCrossRefGoogle Scholar
  9. Duchenin A. M., Gudehithlu K. P., Neff N. H., and Hadjiconstantinou M. (1992) C-fos mRNA in mouse brain after MPTP treatment. Neurochem. Int. 20, 281–287.CrossRefGoogle Scholar
  10. Fini M. E., Cook J. R., Mohan R., and Brinckerhoff C. E. (1998) Regulation of matrix metalloproteinase gene expression. In Matrix Metalloproteinases. Parks W. C. and Mecham R. P. (eds.). New York: Academic Press, pp. 299–356.Google Scholar
  11. Fujimura M., Gasche Y., Morita-Fujimura Y., Massengale J., Kawase M., and Chan P. H. (1999) Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 842, 92–100.PubMedCrossRefGoogle Scholar
  12. Gijbels K., Proost P., Masure S., Carton H., Biliau A., and Opdenakker G. (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J. Neurosci. Res. 36, 432–440.PubMedCrossRefGoogle Scholar
  13. Gu Z., Kaul M., Yab B., Kridel S. J., Cui J., Strongin A., et al. (2002) S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190.PubMedCrossRefGoogle Scholar
  14. Hirsch E. C., Breidert T., Rousselet E., Hunot S., Hartmann A., and Michel P.P. (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann. NY Acad. Sci. 991, 214–228.PubMedCrossRefGoogle Scholar
  15. Ihara M., Tomimoto H., Kinoshita M., Oh J., Noda M., Wakita H., et al. (2001) Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white matter. J. Cereb. Blood Flow Metab. 21, 828–834.PubMedCrossRefGoogle Scholar
  16. Jung K., Krell H. W., Ortel B., Hasan T., Romer A., Schnorr D., et al. (2003) Plasma matrix metalloproteinase 9 as biomarker of prostate cancer progression in Dunning (Copenhagen) rats. Prostate 54, 206–211.PubMedCrossRefGoogle Scholar
  17. Kaur D., Yantiri F., Rajagopalan S., Kumar J., Mo J. Q., Boonplueang R., et al. (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37, 899–909.PubMedCrossRefGoogle Scholar
  18. Kim G. W., Gasche Y., Grzeschik S., Copin J. C., Maier C. M., and Chan P. H. (2003) Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood brain barrier disruption? J. Neurosci. 23, 8733–8742.PubMedGoogle Scholar
  19. Kleiner D. E. and Stetler-Stevenson W. G. (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal. Biochem. 218, 325–329.PubMedCrossRefGoogle Scholar
  20. Kurkowska-Jastrzebska I., Wronska A., Kohutnicka M., Czlonkowski A., and Czlonkowska A. (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50–61.PubMedCrossRefGoogle Scholar
  21. Kurlan R, Kim M. H., and Gash D. M. (1991) The time course and magnitude of spontaneus recovery of parkinsonism produced by intracarotid administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to monkeys. Ann. Neurol. 29, 677–679.PubMedCrossRefGoogle Scholar
  22. Langston J. W., Ballard P., Tetrud J. W., and Irwin I. (1983) Chronic parkinsonism in humans due to produce of meperidine-analog synthesis. Science 219, 979–980.PubMedCrossRefGoogle Scholar
  23. Leake A., Morris C. M., and Whateley J. (2000) Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neurosci. Lett. 291, 201–203.PubMedCrossRefGoogle Scholar
  24. Lim G., Backstrom J. R., Cullen M. J., et al. (1996) Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J. Neurochem. 67, 251–259.PubMedCrossRefGoogle Scholar
  25. Lorenzl S., Albers D. S., Narr S., Chirichigno J., and Beal M. F. (2002) Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp. Neurol. 178, 13–20.PubMedCrossRefGoogle Scholar
  26. Lorenzl S., Albers D. S., Relkin N., Ngyuen T., Hilgenberg S. L., Chirichigno J., et al. (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem. Int. 43, 191–196.PubMedCrossRefGoogle Scholar
  27. Maeda A. and Sobel R. A. (1996) Matrix metalloproteinases in the normal human central nervous system, microglia nodules, and multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 55, 300–309.PubMedGoogle Scholar
  28. Miyazaki K., Hasegawa M., Funahashi K., and Umeda M. (1993) A metallopreoteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature 362, 839–841.PubMedCrossRefGoogle Scholar
  29. Nagase H. and Woessner J. F. (1999) matrix metalloproteinases: a minireview. J. Biol. Chem. 274, 21,491–21,494.CrossRefGoogle Scholar
  30. Nishi K. (1997) Expression of c-Jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Brain Res. 771, 133–141.PubMedCrossRefGoogle Scholar
  31. O’Callaghan J. P., Martin P. M., and Mass M. J. (1998) The MAP kinase cascade is activated prior to the induction of gliosis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of dopaminergic neurotoxicity. Ann. NY Acad. Sci. 844, 40–49.PubMedCrossRefGoogle Scholar
  32. Paul R., Lorenzl S., Koedel U., Sporer B., Vogel U., Frosch M., et al. (1998) Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann. Neurol. 44, 592–600.PubMedCrossRefGoogle Scholar
  33. Peres N., Perillo E., and Zucker S. (1995) Localization of tissue inhibitor of matrix metalloproteinases in Alzheimer’s disease and normal brain. J. Neuropathol. Exp. Neurol. 54, 16–22.Google Scholar
  34. Saporito M. S., Thomas B. A., and Scott R. W. (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem. 75, 1200–1208.PubMedCrossRefGoogle Scholar
  35. Sugama S., Yang L., Cho B. P., DeGiorgio L. A., Lorenzl S., Albers D. A., et al. (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57Bl mice. Brain Res. 964, 288–294.PubMedCrossRefGoogle Scholar
  36. Szklarczyk A., Lapinska J., Rylski M., McKay R. D. G., and Kaczmarek L. (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J. Neurosci. 22, 920–930.PubMedGoogle Scholar
  37. Tipton K. F. and Singer T. P. (1993). Advances in our understanding of the mechnisms of the neurotoxicity of MPTP and related compounds. J. Neurochem. 61, 1191–1206.PubMedCrossRefGoogle Scholar
  38. Turmel H., Hartmann A., Parain K., Douhou A., Srinivasan A., Agid Y., et al. (2001) Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated mice. Mov. Disord. 16, 185–189.PubMedCrossRefGoogle Scholar
  39. Viswanth V., Wu Y., Boonplueang R., Chen S., Stevenson F. F., Yantri F., et al. (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J. Neurosci. 21, 9519–9528.Google Scholar
  40. Wang X., Mori T., Jung J. C., Fini M. E., and Lo E. H. (2002) Secretion of matrix metalloproteinase-2 and -9 after mechanical trauma injury in rat cortical cultures and involvement of MAP kinase. J. Neurotrauma 19, 615–625.PubMedCrossRefGoogle Scholar
  41. Yang L., Schulz J. B., Klockgether T., Liao A. W., Martinou J. C., Penney J. B. Jr., et al. (1998) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity is attenuated in mice overexpressing Bcl-2. J. Neurosci. 18, 8145–8152.PubMedGoogle Scholar
  42. Yoshiyama Y., Ashina M., and Hattori T. (2000) Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer’s disease brain. Acta Neuropathol. 99, 91–95.PubMedCrossRefGoogle Scholar
  43. Zhang J. W. and Gottschall P. E. (1997) Zymographic measurement of gelatinase activity in brain tissue after detergent extraction and affinity-support purification. J. Neurosci. Methods 76, 15–20.PubMedCrossRefGoogle Scholar
  44. Zhang J. W., Deb S., and Gottschall P. E. (1998) Regional and differential expression of gelatinases in rat brain after systemic kainic acid or bicuculline administration. Eur. J. Neurosci. 10, 3358–3368.PubMedCrossRefGoogle Scholar
  45. Zhang W. J., Deb S., and Gottschall P. E. (2000) Regional and age-related expression of gelatinases in the brains of young and old rats after treatment with kainic acid. Neurosci. Lett. 295, 9–12.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Stefan Lorenzl
    • 1
  • Noel Calingasan
    • 1
  • Lichuan Yang
    • 1
  • David S. Albers
    • 1
  • Shuei Shugama
    • 2
  • Jason Gregorio
    • 1
  • H. W. Krell
    • 3
  • Jason Chirichigno
    • 1
  • Tong Joh
    • 2
  • M. Flint Beal
    • 1
  1. 1.Department of Neurology and NeuroscienceWeill Medical College of Cornell UniversityNew York
  2. 2.Burke Medical Research InstituteWhite Plains
  3. 3.Pharmaceutical ResearchRoche Diagnostics GmbHPenzbergGermany

Personalised recommendations