NeuroMolecular Medicine

, Volume 5, Issue 1, pp 69–83 | Cite as

Neurotrophic mechanisms in drug addiction

Article

Abstract

The involvement of neurotrophic factors in neuronal survival and differentiation is well established. The more recent realization that these factors also play pivotal roles in the maintenance and activity-dependent remodeling of neuronal functioning in the adult brain has generated excitement in the neurosciences. Neurotrophic factors have been implicated in the modulation of synaptic transmission and in the mechanisms underlying learning and memory, mood disorders, and drug addiction. Here the evidence for the role of neurotrophins and other neurotrophic factors—and the signaling pathways they activate—in mediating long-term molecular, cellular, and behavioral adaptations associated with drug addiction is reviewed.

Index Entries

Brain-derived neurotrophic factor (BDNF) Trk receptor nucleus accumbens ventral tegmental area cocaine, morphine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrous, D. N., Adriani, W., Montaron, M. F., et al. (2002) Nicotine self-administration impairs hippocampal plasticity. J. Neurosci. 22, 3656–3662.PubMedGoogle Scholar
  2. Alonso, M., Vianna, M. R., Depino, A. M., et al. (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12, 551–560.PubMedCrossRefGoogle Scholar
  3. Barbacid, M. (1995) Neurotrophic factors and their receptors. Curr. Opin. Cell Biol. 7, 148–155.PubMedCrossRefGoogle Scholar
  4. Barde, Y. (1989) Trophic factors and neuronal survival. Neuron 2, 1525–1534.PubMedCrossRefGoogle Scholar
  5. Barde, Y. A. (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog. Clin. Biol. Res. 390, 45–56.PubMedGoogle Scholar
  6. Barrot, M., Olivier, J. D., Perrotti, L. I., et al. (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA. 99, 11435–11440.PubMedCrossRefGoogle Scholar
  7. Batchelor, P. E., Liberatore, G. T., Porritt, M. J., Donnan, G. A., Howells, D. W. (2000) Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur. J. Neurosci. 12, 3462–3468.PubMedCrossRefGoogle Scholar
  8. Beitner-Johnson, D., and Nestler, E. J. (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J. Neurochem. 57, 344–347.PubMedCrossRefGoogle Scholar
  9. Beitner-Johnson, D., and Nestler, E. J. (1993a) Chronic morphine impairs axoplasmic transport in the mesolimbic dopamine system of the rat brain. Neuro Report 5, 57–60.Google Scholar
  10. Beitner-Johnson, D., and Nestler, E. J. (1993b) Chronic morphine decreases insulin-like growth factor-I levels in the ventral tegmental area of the rat brain. Ann. NY Acad. Sci. 692, 246–248.PubMedCrossRefGoogle Scholar
  11. Beitner-Johnson, D., Guitart, X., Nestler, E. J. (1992) Neurofilament proteins and the mesolimbic dopamine system: common regulation by chronic morphine and chronic cocaine in the rat ventral tegmental area. J. Neurosci. 12, 2165–2176.PubMedGoogle Scholar
  12. Beitner-Johnson, D., Guitart, X., Nestler, E. J. (1993) Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J. Neurochem. 61, 1766–1773.PubMedCrossRefGoogle Scholar
  13. Berhow, M. T., Hiroi, N., Nestler, E. J. (1996a) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 4707–4715.PubMedGoogle Scholar
  14. Berhow, M. T., Hiroi, N., Kobierski, L. A., Hyman, S. E., Nestler, E. J. (1996b) Influence of cocaine on the JAK-STAT pathway in the mesolimbic dopamine system. J. Neurosci. 16, 8019–8026.PubMedGoogle Scholar
  15. Berhow, M. T., Russell, D. S., Terwilliger, R. Z., et al. (1995) Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience 68, 969–979.PubMedCrossRefGoogle Scholar
  16. Berridge, M. J., Lipp, P., Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.PubMedCrossRefGoogle Scholar
  17. Berridge, M. J., Bootman, M. D., Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529.PubMedCrossRefGoogle Scholar
  18. Bibb, J. A., Chen, J., Taylor, J. R., et al. (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376–380.PubMedCrossRefGoogle Scholar
  19. Bibel, M., and Barde, Y. A. (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937.PubMedCrossRefGoogle Scholar
  20. Bolanos, C. A., Olson, V. G., Eisch, A. J., Russell, D. S., Neve, R. L., Nestler, E. J. (2001) Viral-mediated expression of phospholipase C-gamma 1 and insulin receptor substrate-2 in the ventral tegmental area regulates sensitivity to drugs of abuse in rats. Soc. Neurosci. Abstr. 27, Google Scholar
  21. Bolanos, C. A., Perrotti, L. I., Edwards, S., et al. (2003) Phospholipase Cgamma in distinct regions of the ventral tegmental area differentially modulates mood-related behaviors. J. Neurosci. 23, 7569–7576.PubMedGoogle Scholar
  22. Bonci, A., Malenka, R. C. (1999) Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci. 19, 3723–3730.PubMedGoogle Scholar
  23. Bonni, A., and Greenberg, M. E. (1997) Neurotrophin regulation of gene expression. Can. J. Neurol. Sci. 24, 272–283.PubMedGoogle Scholar
  24. Carlezon, W. A., Jr., Boundy, V. A., Haile, C. N., et al. (1997) Sensitization to morphine induced by viral-mediated gene transfer. Science 277, 812–814.PubMedCrossRefGoogle Scholar
  25. Carlezon, W. A., Jr., Thome, J., Olson, V. G., et al. (1998) Regulation of cocaine reward by CREB. Science 282, 2272–2275.PubMedCrossRefGoogle Scholar
  26. Carpenter G. and Ji Q. (1999) Phospholipase C-gamma as a signal-transducing element. Exp. Cell Res. 253, 15–24.PubMedCrossRefGoogle Scholar
  27. Ceccatelli, S., Ernfors, P., Villar, M. J., Persson, H., Hokfelt, T. (1991) Expanded distribution of mRNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the rat brain after colchicine treatment. Proc. Natl. Acad. Sci. USA. 88, 10352–10356.PubMedCrossRefGoogle Scholar
  28. Chao, M. V. (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.PubMedCrossRefGoogle Scholar
  29. Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M., Varon, S. (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295–2313.PubMedGoogle Scholar
  30. Danzer, S. C., Crooks, K. R., Lo, D. C., McNamara, J. O. (2002) Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J. Neurosci. 22, 9754–9763.PubMedGoogle Scholar
  31. Dechant, G., and Neumann, H. (2002) Neurotrophins. Adv. Exp. Med. Biol. 513, 303–334.PubMedGoogle Scholar
  32. Dhavan, R., and Tsai, L. H. (2001) A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759.PubMedCrossRefGoogle Scholar
  33. Di Chiara, G. (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol. 375, 13–30.PubMedCrossRefGoogle Scholar
  34. Di Chiara, G., and North, R. A. (1992) Neurobiology of opiate abuse. Trends Pharmacol. Sci. 13, 185–193.PubMedCrossRefGoogle Scholar
  35. Downward, J. (2001) The ins and outs of signalling. Nature 411, 759–762.PubMedCrossRefGoogle Scholar
  36. Duman, R. S. (2002) Synaptic plasticity and mood disorders. Mol. Psychiatry 7(suppl 1) S29-S34.PubMedCrossRefGoogle Scholar
  37. Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W., Nestler, E. J. (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl. Acad. Sci. USA. 97, 7579–7584.PubMedCrossRefGoogle Scholar
  38. Flores, C., Rodaros, D., Stewart, J. (1998) Long-lasting induction of astrocytic basic fibroblast growth factor by repeated injections of amphetamine: blockade by concurrent treatment with a glutamate antagonist. J. Neurosci. 18, 9547–9555.PubMedGoogle Scholar
  39. Flores, C., Samaha, A. N., Stewart, J. (2000) Requirement of endogenous basic fibroblast growth factor for sensitization to amphetamine. J. Neurosci. 20, RC55.Google Scholar
  40. Freeman, A. Y., and Pierce, R. C. (2002) Neutralization of neutrophin-3 in the ventral tegmental area or nucleus accumbens differentially modulates cocaine-induced behavioral plasticity in rats. Synapse 46, 57–65.PubMedCrossRefGoogle Scholar
  41. Gash, D. M., Zhang, Z., Ovadia, A., et al. (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–3255.PubMedCrossRefGoogle Scholar
  42. Ghosh, A., and Greenberg, M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.PubMedCrossRefGoogle Scholar
  43. Gould, E., Tanapat, P., Hastings, N. B., Shors, T. J. (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn. Sci. 3, 186–192.PubMedCrossRefGoogle Scholar
  44. Graybiel, A. M. (2000) The basal ganglia. Curr. Biol. 10, R509-R511.PubMedCrossRefGoogle Scholar
  45. Griffin, J. W., Clark, A. C., Parhad, I., Watson, D. F., Hoffman, P. N. (1991) The neuronal cytoskeleton in disorders of the motor neuron. Adv. Neurol. 56, 103–113.PubMedGoogle Scholar
  46. Grimm, J. W., Lu, L., Hayashi, T., Hope, B. T., Su, T. P., Shaham, Y. (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 23, 742–747.PubMedGoogle Scholar
  47. Guillin, O., Diaz, J., Carroll, P., Griffon, N., Schwartz, J. C., Sokoloff, P. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411, 86–389.PubMedCrossRefGoogle Scholar
  48. Hall, F. S., Drgonova, J., Goeb, M., Uhl, G. R. (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28, 1485–1490.PubMedCrossRefGoogle Scholar
  49. Hoffman, P. N., Griffin, J. W., Price, D. L. (1984) Control of axonal caliber by neurofilament transport. J. Cell. Biol. 99, 705–714.PubMedCrossRefGoogle Scholar
  50. Hoffman, P. N., Cleveland, D. W., Griffin, J. W., Landes, P. W., Cowan, N. J., Price, D. L. (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA. 84, 3472–3476.PubMedCrossRefGoogle Scholar
  51. Horch, H. W., and Katz, L. C. (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184.PubMedCrossRefGoogle Scholar
  52. Horger, B. A., Iyasere, C. A., Berhow, M. T., Messer, C. J., Nestler, E. J., Taylor, J. R. (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J. Neurosci. 19, 4110–4122.PubMedGoogle Scholar
  53. Hyman, C., Juhasz, M., Jackson, C., Wright, P., Ip, N. Y., Lindsay, R. M. (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.PubMedGoogle Scholar
  54. Hyman, S. E., and Malenka, R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703.PubMedCrossRefGoogle Scholar
  55. Ip, N. Y., Nye, S. H., Boulton, T. G., et al. (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69, 1121–1132.PubMedCrossRefGoogle Scholar
  56. Isackson, P. J., Huntsman, M. M., Murray, K. D., Gall, C. M. (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6, 937–948.PubMedCrossRefGoogle Scholar
  57. Izzo, E., Martin-Fardon, R., Koob, G. F., Weiss, F., Sanna, P. P. (2002) Neural plasticity and addiction: PI3-kinase and cocaine behavioral sensitization. Nat. Neurosci. 5, 1263–1264.PubMedCrossRefGoogle Scholar
  58. Kalivas, P. W., Striplin, C. D., Steketee, J. D., Klitenick, M. A., Duffy, P. (1992) Cellular mechanisms of behavioral sensitization to drugs of abuse. Ann. NY Acad. Sci. 654, 128–135.PubMedCrossRefGoogle Scholar
  59. Kaplan, D. R., and Miller, F. D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391.PubMedCrossRefGoogle Scholar
  60. Kelley, A. E., and Berridge, K. C. (2002) The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311.PubMedGoogle Scholar
  61. Kempermann, G., van Praag, H., Gage, F. H. (2000) Activity-dependent regulation of neuronal plasticity and self repair. Prog, Brain Res, 127, 35–48.CrossRefGoogle Scholar
  62. Kernie, S. G., and Parada, L. F. (2000) The molecular basis for understanding neurotrophins and their relevance to neurologic disease. Arch. Neurol. 57, 654–657.PubMedCrossRefGoogle Scholar
  63. Koob, G. F., and Nestler, E. J. (1997) The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci. 9, 482–497.PubMedGoogle Scholar
  64. Koob, G. F., Sanna, P. P., Bloom, F. E. (1998) Neuroscience of addiction. Neuron 21, 467–476.PubMedCrossRefGoogle Scholar
  65. Lee, F. S., Kim, A. H., Khursigara, G., Chao, M. V. (2001) The uniqueness of being a neurotrophin receptor. Curr. Opin. Neurobiol. 11, 281–286.PubMedCrossRefGoogle Scholar
  66. Lindsay, R. M., Weigand, S. J., Altar, C. A., DiStefano, P. S. (1994) Neurotrophic factors: from molecules to man. Trends Neurosci. 17, 182–190.PubMedCrossRefGoogle Scholar
  67. Lu, B., and Figurov, A. (1997) Role of neurotrophins in synapse development and plasticity. Rev. Neurosci. 22, 295–318.Google Scholar
  68. McFarlane, S. (2000) Dendritic morphogenesis: building an arbor. Mol. Neurobiol. 22, 1–9.PubMedCrossRefGoogle Scholar
  69. Messer, C. J., Eisch, A. J., Carlezon, W. A., Jr., et al. (2000) Role for GDNF in biochemical and behavioral adaptations to drugs of abuse. Neuron 26, 247–257.PubMedCrossRefGoogle Scholar
  70. Myers, M. G., Jr., Backer, J. M., Sun, X. J., et al. (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA. 89, 10350–10354.PubMedCrossRefGoogle Scholar
  71. Nestler, E. J. (1992) Molecular mechanisms of drug addiction. J. Neurosci. 12, 2439–2450.PubMedGoogle Scholar
  72. Nestler, E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.PubMedCrossRefGoogle Scholar
  73. Nestler, E. J. (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647.PubMedCrossRefGoogle Scholar
  74. Nestler, E. J., Berhow, M. T., Brodkin, E. S. (1996) Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol. Psychiatry. 1, 190–3199.PubMedGoogle Scholar
  75. Nestler, E. J., Bergson, C. M., Gultart, X., Hope, B. T. (1993) Regulation of neural gene expression in opiate and cocaine addiction. NIDA Res. Monogr. 125, 92–116.PubMedGoogle Scholar
  76. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., Monteggia, L. M. (2002) Neurobiology of depression. Neuron 34, 13–25.PubMedCrossRefGoogle Scholar
  77. Nixon, K., and Crews, F. T. (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J. Neurochem. 83, 1087–1093.PubMedCrossRefGoogle Scholar
  78. Norrholm, S. D., Bibb, J. A., Nestler, E. J., Ouimet, C. C., Taylor, J. R., Greengard, P. (2003) Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116, 19–22.PubMedCrossRefGoogle Scholar
  79. Numan, S., and Seroogy, K. B. (1999) Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J. Comp. Neurol. 403, 295–308.PubMedCrossRefGoogle Scholar
  80. Ortiz, J., Harris, H. W., Guitart, X., Terwilliger, R. Z., Haycock, J. W., Nestler, E. J. (1995a) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J. Neurosci. 15, 1285–1297.PubMedGoogle Scholar
  81. Ortiz, J., Fitzgerald, L. W., Charlton, M., et al. (1995b) Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 21, 289–298.PubMedCrossRefGoogle Scholar
  82. Patterson, S. L., Abel, T., Deuel, T. A., Martin, K. C., Rose, J. C., Kandel, E. R. (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–31145.PubMedCrossRefGoogle Scholar
  83. Phillips, H. S., Hains, J. M., Laramee, G. R., Rosenthal, A., Winslow, J. W. (1990) Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science 250, 290–3294.PubMedCrossRefGoogle Scholar
  84. Pierce, R. C., and Bari A. A. (2001) The role of neurotrophic factors in psychostimulant-induced behavioral and neuronal plasticity. Rev. Neurosci. 12, 95–110.PubMedGoogle Scholar
  85. Pierce, R. C., Pierce-Bancroft, A. F., Prasad, B. M. (1999) Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J. Neurosci. 19, 8685–8695.PubMedGoogle Scholar
  86. Pilla, M., Perachon, S., Sautel, F., et al. (1999) Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400, 371–375.PubMedCrossRefGoogle Scholar
  87. Poo, M. M. (2001) Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 243-#32.CrossRefGoogle Scholar
  88. Rhee, S. G. (2001) Regulation of Phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312.PubMedCrossRefGoogle Scholar
  89. Richtand, N. M., Logue, A. D., Welge, J. A., et al. (2000) The dopamine D3 receptor antagonist nafadotride inhibits development of locomotor sensitization to amphetamine. Brain Res. 867, 239–242.PubMedCrossRefGoogle Scholar
  90. Robbins, T. W., and Everitt, B. J. (1996) Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–236.PubMedCrossRefGoogle Scholar
  91. Robinson, T. E., and Kolb, B. (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 8491–38497.PubMedGoogle Scholar
  92. Robinson, T. E., and Kolb, B. (1999) Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse 33, 160–162.PubMedCrossRefGoogle Scholar
  93. Robinson, T. E., Gorny, G., Mitton, E., Kolb, B. (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39, 257–3266.PubMedCrossRefGoogle Scholar
  94. Robinson, T. E., Gorny, G., Savage, V. R., Kolb, B. (2002) Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse 46, 271–3279.PubMedCrossRefGoogle Scholar
  95. Ross, C. A., MacCumber, M. W., Glatt, C. E., Snyder, S. H. (1989) Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc. Natl. Acad. Sci. USA. 86, 2923–2927.PubMedCrossRefGoogle Scholar
  96. Russell, D. (1995) Neurotrophins: mechanisms of action. Neuroscientist 1, 3–36.CrossRefGoogle Scholar
  97. Russo-Neustadt, A. (2003) Brain-derived neurotrophic factor, behavior, and new directions for the treatment of mental disorders. Semin. Clin. Neuropsychiatry 8, 109–3118.PubMedCrossRefGoogle Scholar
  98. Schuman, E. M. (1999) Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109.PubMedCrossRefGoogle Scholar
  99. Segal, R. A., and Greenberg, M. E. (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489.PubMedGoogle Scholar
  100. Self, D. W., and Nestler, E. J. (1995) Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463–495.PubMedCrossRefGoogle Scholar
  101. Self, D. W., McClenahan, A. W., Beitner-Johnson, D., Terwilliger, R. Z., Nestler, E. J. (1995) Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration. Synapse 21, 312–318.PubMedCrossRefGoogle Scholar
  102. Self, D. W., Genova, L. M., Hope, B. T., Barnhart, W. J., Spencer, J. J., Nestler, E. J. (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J. Neurosci. 18, 1848–1859.PubMedGoogle Scholar
  103. Seroogy, K. B., and Gall, C. M. (1993) Expression of neurotrophins by midbrain dopaminergic neurons. Exp. Neurol. 124, 119–128.PubMedCrossRefGoogle Scholar
  104. Seroogy, K. B., Lundgren, K. H., Tran, T. M., Guthrie, K. M., Isackson, P. J., Gall, C. M. (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J. Comp. Neurol. 342, 321–334.PubMedCrossRefGoogle Scholar
  105. Sklair-Tavron, L., Shi, W. X., Lane, S. B., Harris, H. W., Bunney, B. S., Nestler, E. J. (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc. Natl. Acad. Sci. USA. 93, 11202–11207.PubMedCrossRefGoogle Scholar
  106. Sorg, B. A., Chen, S. Y., Kalivas, P.W. (1993) Time course of tyrosine hydroxylase expression after behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 266, 424–430.PubMedGoogle Scholar
  107. Spenger, C., Hyman, C., Studer, L., et al. (1995) Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp. Neurol. 133, 50–63.PubMedCrossRefGoogle Scholar
  108. Sun, X. J., Wang, L. M., Zhang, Y., et al. (1995) Role of IRS-2 in insulin and cytokine signalling. Nature 377, 173–177.PubMedCrossRefGoogle Scholar
  109. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M., Nestler, E. J. (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548, 100–110.PubMedCrossRefGoogle Scholar
  110. Tomac, A., Lindqvist, E., Lin, L. F., et al. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.PubMedCrossRefGoogle Scholar
  111. Tyler, W. J., Perrett, S. P., Pozzo-Miller, L. D. (2002) The role of neurotrophins in neurotransmitter release. Neuroscientist 8, 524–531.PubMedCrossRefGoogle Scholar
  112. Valjent, E., Corvol, J. C., Pages, C., Besson, M. J., Maldonado, R., Caboche, J. (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701–8709.PubMedGoogle Scholar
  113. Vorel, S. R., Ashby, C. R., Jr., Paul, M., et al. (2002) Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J. Neurosci. 22, 9595–9603.PubMedGoogle Scholar
  114. Wallace, D. R., Mactutus, C. F., Booze, R. M. (1996) Repeated intravenous cocaine administration: locomotor activity and dopamine D2/D3 receptors. Synapse 23, 152–163.PubMedCrossRefGoogle Scholar
  115. Wise, R. A. (1996) Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251.PubMedCrossRefGoogle Scholar
  116. Wolf, D. H., Numan, S., Nestler, E. J., Russell, D. S. (1999) Regulation of phospholipase Cgamma in the mesolimbic dopamine system by chronic morphine administration. J Neurochemistry 73, 1520–1528.CrossRefGoogle Scholar
  117. Wolf, M. E. (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol. Intervent. 2, 146–157.CrossRefGoogle Scholar
  118. Wolf, M. E. (2003) LTP may trigger addiction. Mol. Intervent. 3, 248–252.CrossRefGoogle Scholar
  119. Wujek, J. R., Lasek, R. J., Gambetti, P. (1986) The amount of slow axonal transport is proportional to the radial dimensions of the axon. J. Neurocytol. 15, 75–83.PubMedCrossRefGoogle Scholar
  120. Yamada, K., and Nabeshima, T. (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J. Pharmacol. Sci. 91, 267–270.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of Psychiatry and Center for Basic NeuroscienceThe University of Texas Southwestern Medical CenterDallas

Personalised recommendations