NeuroMolecular Medicine

, Volume 5, Issue 1, pp 59–68 | Cite as


A functional enigma


Although continued total sleep deprivation is fatal, the function of sleep remains a mystery. Shorter durations of sleep deprivation are followed by rebound increases in non-rapid eye movement (non-REM) sleep, suggesting a homeostatic control. Measurements of the power spectrum of the electroencephalograph (EEG) suggest that a more accurate marker of the homeostasis may be δ frequency power, because it most closely reflects the duration of the preceding sleep deprivation. Several lines of evidence suggest a link with complex metabolic processes. These include a local homeostatic factor, adenosine, that inhibits neuronal activity in response to increases in the ratio of energy demand to metabolite availability. Other evidence derives from the relationship of circadian genes, NPAS2 and Clock, to metabolism. Additionally, at a systems level, hypocretin/Orexin may coordinate motor activity with feeding. A loss of hypocretin neurons or a mutation of the genes controlling this peptide system can result in the sleep disorder narcolepsy.

Finally, evidence for a role of non-REM sleep in developmental central nervous system (CNS) plasticity, as well as learning and memory, is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antle, M. C., and Mistlberger, R. E. (2000) Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J. Neurosci. 20, 9326–9332.PubMedGoogle Scholar
  2. Benington, J. H., and Heller, H. C. (1995) Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347–360.PubMedCrossRefGoogle Scholar
  3. Benington, J. H., Kodali, S. K., Heller, H. C. (1995) Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res. 692, 79–85.PubMedCrossRefGoogle Scholar
  4. Bergmann, B. M., Everson, C. A., Kushida, C. A., et al. (1989) Sleep deprivation in the rat: V. Energy use and mediation. Sleep 12, 31–41.PubMedGoogle Scholar
  5. Borbely, A. A. (1982) A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204.PubMedGoogle Scholar
  6. Buzsaki, G. (1998) Memory consolidation during sleep: a neurophysiological perspective. J. Sleep Res. 7(suppl 1), 17–23.PubMedCrossRefGoogle Scholar
  7. Buzsaki, G., Horvath, Z., Urioste, R., Hetke, J., Wise, K. (1992) High-frequency network oscillation in the hippocampus. Science 256, 1025–1027.PubMedCrossRefGoogle Scholar
  8. Chemelli, R. M., Willie, J. T., Sinton, C. M., et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.PubMedCrossRefGoogle Scholar
  9. Cirelli, C. (2002) How sleep deprivation affects gene expression in the brain: a review of recent findings. J. Appl. Physiol. 92, 394–400.PubMedGoogle Scholar
  10. Cirelli, C., Shaw, P. J., Rechtschaffen, A., Tononi, G. (1999) No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res. 840, 184–193.PubMedCrossRefGoogle Scholar
  11. Cirelli, C., and Tononi, G. (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res. 885, 303–321.PubMedCrossRefGoogle Scholar
  12. Csicsvari, J., Hirase, H., Mamiya, A., Buzsaki, G. (2002) Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave- associated population events. Neuron 28, 585–594.CrossRefGoogle Scholar
  13. Eiland, M. M., Ramanathan, L., Gulyani, S., et al. (2002) Increases in amino-cupric-silver staining of the supraoptic nucleus after sleep deprivation. Brain Res. 945, 1–8.PubMedCrossRefGoogle Scholar
  14. Evarts, E. V. (1967) Activity of individual cerebral neurons during sleep and arousal. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 45, 319–337.PubMedGoogle Scholar
  15. Everson, C. A., Bergmann, B. M., Rechtschaffen, A. (1989) Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 12, 13–21.PubMedGoogle Scholar
  16. Fischer, S., Hallschmid, M., Elsner, A. L., Born, J. (2002) Sleep forms memory for finger skills. Proc. Natl. Acad. Sci. USA. 99, 11987–11991.PubMedCrossRefGoogle Scholar
  17. Frank, M. G., Issa, N. P., Stryker, M. P. (2001) Sleep enhances plasticity in the developing visual cortex. Neuron 30, 275–287.PubMedCrossRefGoogle Scholar
  18. Franken, P., Dijk, D. J., Tobler, I., Borbely, A. A. (1991) Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am. J. Physiol. 261, R198-R208.PubMedGoogle Scholar
  19. Greene, R. W., and Haas, H. L. (1991) The electrophysiology of adenosine in the mammalian central nervous system. Prog. Neurobiol. 36, 329–341.PubMedCrossRefGoogle Scholar
  20. Guilleminault, C., and Anognos, A. (2000) Narcolepsy. In Kryger, M. H., Roth, T., Dement, W. C. (Eds.), Principles and Practice of Sleep Medicine (pp. 676–686). W.B. Saunders, Philadelphia.Google Scholar
  21. Gulyani, S., Wu, M.-F., Nienhuis, R., John, J., Siegel, J. M. (2002) Cataplexy-related neurons in the amygdala of the narcoleptic dog. Neuroscience 112, 355–365.PubMedCrossRefGoogle Scholar
  22. Hendricks, J. C., Finn, S. M., Panckeri, K. A., et al. (2000) Rest in Drosophila is a sleep-like state. Neuron 25, 129–138.PubMedCrossRefGoogle Scholar
  23. John, J., Wu, M. F., Siegel, J. M. (2000) Hypocretin-1 reduces cataplexy and normalizes sleep and waking durations in narcoleptic dogs. Sleep 23, A12.Google Scholar
  24. John, J., Wu, M.-F., Kodama, T., Siegel, J. M. (2003) Intravenously administered hypocretin-1 alters brain amino acid release: an in vivo microdialysis study in rats. J. Physiol. (Lond). 548, 557–562.CrossRefGoogle Scholar
  25. Kiyashchenko, L. I., Mileykovskiy, B. Y., Maidment, N., et al. (2002) Release of hypocretin (orexin) during waking and sleep states. J. Neurosci. 22, 5282–5286.PubMedGoogle Scholar
  26. Kong, J., Shepel, P. N., Holden, C. P., Mackiewicz, M., Pack, A. I., Geiger, J. D. (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci. 22, 5581–5587.PubMedGoogle Scholar
  27. Lee, A. K., and Wilson, M. A. (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194.PubMedCrossRefGoogle Scholar
  28. Lin, L., Faraco, J., Li, R., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.PubMedCrossRefGoogle Scholar
  29. Liu, R. J., van den Pol, A. N., Aghajanian, G. K. (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J. Neurosci. 22, 9453–9464.PubMedGoogle Scholar
  30. Louie, K., and Wilson, M. A. (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145–156.PubMedCrossRefGoogle Scholar
  31. Magistretti, P. J., Hof, P. R., Martin, J. L. (1986) Adenosine stimulates glycogenolysis in mouse cerebral cortex: a possible coupling mechanism between neuronal activity and energy metabolism. J. Neurosci. 6, 2558–2562.PubMedGoogle Scholar
  32. Materi, L. M., Rasmusson, D. D., Semba, K. (2000) Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat. Neuroscience 97, 219–226.PubMedCrossRefGoogle Scholar
  33. McCormick, D. A. (1993) Actions of acetylcholine in the cerebral cortex and thalamus and implications for function. Prog. Brain Res. 98, 303–308.PubMedCrossRefGoogle Scholar
  34. McCormick, D. A., and Bal, T. (1997) Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215.PubMedCrossRefGoogle Scholar
  35. McCormick, D. A., and Pape, H. C. (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. 431, 291–318.PubMedGoogle Scholar
  36. McHugh, T. J., Blum, K. I., Tsien, J. Z., Tonegawa, S., Wilson, M. A. (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87, 1339–1349.PubMedCrossRefGoogle Scholar
  37. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., Buzsaki, G. (1999) Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507.PubMedGoogle Scholar
  38. Pape, H. C. (1992) Adenosine promotes burst activity in guinea-pig geniculocortical neurones through two different ionic mechanisms. J. Physiol. 447, 729–753.PubMedGoogle Scholar
  39. Peever, J. H., Lai, Y. Y., Siegel, J. M. (2003) Excitatory effects of hypocretin-1 (orexin-A) in the trigeminal motor nucleus are reversed by NMDA antagonism. J. Neurophysiol. Google Scholar
  40. Peyron, C., Faraco, J., Rogers, W., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.PubMedCrossRefGoogle Scholar
  41. Porkka-Heiskanen, T., Strecker, R. E., McCarley, R. W. (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99, 507–517.PubMedCrossRefGoogle Scholar
  42. Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M., et al. (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268.PubMedCrossRefGoogle Scholar
  43. Portas, C. M., Thakkar, M., Rainnie, D. G., Greene, R. W., McCarley, R. W. (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79, 225–235.PubMedCrossRefGoogle Scholar
  44. Rainnie, D. G., Grunze, H. C., McCarley, R. W., Greene, R. W. (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263, 689–692.PubMedCrossRefGoogle Scholar
  45. Reick, M., Garcia, J. A., Dudley, C., McKnight, S. L. (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509.PubMedCrossRefGoogle Scholar
  46. Rutter, J., Reick, M., Wu, L. C., McKnight, S. L. (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514.PubMedCrossRefGoogle Scholar
  47. Schenck, C. H., and Mahowald, M. W. (1992) Motor dyscontrol in narcolepsy: rapid-eye-movement (REM) sleep without atonia and REM sleep behavior disorder. Ann. Neurol. 32, 3–10.PubMedCrossRefGoogle Scholar
  48. Shaw, P. J., Cirelli, C., Greenspan, R. J., Tononi, G. (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837.PubMedCrossRefGoogle Scholar
  49. Shaw, P. J., and Franken, P. (2003) Perchance to dream: solving the mystery of sleep through genetic analysis. J. Neurobiol. 54, 179–202.PubMedCrossRefGoogle Scholar
  50. Shaw, P. J., Tononi, G., Greenspan, R. J., Robinson, D. F. (2002) Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291.PubMedCrossRefGoogle Scholar
  51. Siegel, J. M. (1999) Narcolepsy: a key role for hypocretins (orexins). Cell 98, 409–412.PubMedCrossRefGoogle Scholar
  52. Siegel, J. M. (2000) Narcolepsy. Sci. Amer. 282, 76–81.CrossRefGoogle Scholar
  53. Siegel, J. M. (2001) The REM sleep-memory consolidation hypothesis. Science 294, 1058–1063.PubMedCrossRefGoogle Scholar
  54. Siegel, J. M. (2003a) Hypocretin (orexin): role in normal behavior and neuropathology. Annu. Rev. Psychol. In press.Google Scholar
  55. Siegel, J. M. (2003b) Why we sleep. Sci. Amer. 289, 92–97.PubMedGoogle Scholar
  56. Skaggs, W.E., McNaughton, B.L. (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873.PubMedCrossRefGoogle Scholar
  57. Smith, C. (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med. Rev. 5, 491–506.PubMedCrossRefGoogle Scholar
  58. Steriade, M., and Timofeev, I. (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37, 563–576.PubMedCrossRefGoogle Scholar
  59. Stickgold, R., James, L., Hobson, J. A. (2000a) Visual discrimination learning requires sleep after training. Nat. Neurosci. 3, 1237–1238.PubMedCrossRefGoogle Scholar
  60. Stickgold, R., Whidbee, D., Schirmer, B., Patel, V., Hobson, J. A. (2000b) Visual discrimination task improvement: A multi-step process occurring during sleep. J. Cogn. Neurosci. 12, 246–254.PubMedCrossRefGoogle Scholar
  61. Taha, S., and Stryker, M. P. (2002) Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Neuron 34, 425–436.PubMedCrossRefGoogle Scholar
  62. Terao, A., Steininger, T. L., Hyder, K., et al. (2003) Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116, 187–200.PubMedCrossRefGoogle Scholar
  63. Thannickal, T. C., Moore, R. Y., Nienhuis, R., et al. (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474.PubMedCrossRefGoogle Scholar
  64. Tobler, I., and Borbely, A. A. (1986) Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol. 64, 74–76.PubMedCrossRefGoogle Scholar
  65. Tranque, P., Crossin, K. L., Cirelli, C., Edelman, G. M., Mauro, V. P. (1996) Identification and characterization of a RING zinc finger gene (C-RZF) expressed in chicken embryo cells. Proc. Natl. Acad. Sci. USA. 93, 3105–3109.PubMedCrossRefGoogle Scholar
  66. van den Pol, A. N., Gao, X. B., Obrietan, K., Kilduff, T. S., Belousov, A. B. (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci. 18, 7962–7971.PubMedGoogle Scholar
  67. Vertes, R. P., Eastman, K. E. (2000) The case against memory consolidation in REM sleep. Behav. Brain Sci. 23, 867–876.PubMedCrossRefGoogle Scholar
  68. Walker, M. P., Brakefield, T., Hobson, J. A., Stickgold, R. (2003) Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620.PubMedCrossRefGoogle Scholar
  69. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., Stickgold, R. (2002) Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211.PubMedCrossRefGoogle Scholar
  70. Wilson, M. A., and McNaughton, B. L. (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679.PubMedCrossRefGoogle Scholar
  71. Wu, M. F., John, J., Maidment, N., Lam, H. A., Siegel, J. M. (2002) Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1079-R1086.PubMedGoogle Scholar
  72. Yamanaka, A., Beuckmann, C. T., Willie, J. T., et al. (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701–713.PubMedCrossRefGoogle Scholar
  73. Ylinen, A., Bragin, A., Nadasdy, Z., et al. (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of PsychiatryVAMC Dallas & UTSWDallas
  2. 2.Department of PsychiatryVAMC Sepulveda & UCLA

Personalised recommendations