Advertisement

NeuroMolecular Medicine

, Volume 5, Issue 1, pp 11–25 | Cite as

Role of neurotrophic factors in the etiology and treatment of mood disorders

  • Ronald S. DumanEmail author
Article

Abstract

Basic research in rodents has demonstrated that exposure to stress decreases levels of brain-derived neurotrophic factor (BDNF) in brain regions associated with depression. In contrast, antidepressant treatment produces the opposite effect and blocks the effects of stress on BDNF. BDNF upregulation and possibly other neurotrophic/growth factors could reverse or block the atrophy and cell loss that has been observed in rodent stress models and in depressed patients. The morphological alterations observed in depressed patients could result from decreased size or number of glia and/or neurons and may include regulation of adult neurogenesis. This article reviews the primary work leading to a neurotrophic hypothesis of depression and antidepressant action and the cellular mechanisms and signal transduction pathways that underlie these effects.

Index Entries

Antidepressant stress neurogenesis serotonin norepinephrine hippocampus brain-derived neurotrophic factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benes, F., Kwok, E. W., Vincent, S. L., Todtenkopf, M. S. (1998) A reduction of nonpyramidal cells in sector CA2 of schophrenics and manic depressives. Biol Psychiat. 15, 88–97.CrossRefGoogle Scholar
  2. Bowley, M., Drevets, W. C., Ongur, D., Price, J. L. (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiat. 52, 404–412.PubMedCrossRefGoogle Scholar
  3. Bremner, J. D., Randall, P., Scott, T. M., et al. (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry 152, 973–981.PubMedGoogle Scholar
  4. Brezun, J., and Daszuta, A. (2000) Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur. J. Neurosci. 12, 391–396.PubMedCrossRefGoogle Scholar
  5. Cameron, H., and Gould, E. (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61, 203–209.PubMedCrossRefGoogle Scholar
  6. Cameron, H., Tanapat, P., Gould, E. (1998) Adrenal steroids and N-Methyl-D-Aspartate receptor activation regulate neurogenesis in the dentate fyrus of adult rats through a common pathway. Neuroscience 82, 349–354.PubMedCrossRefGoogle Scholar
  7. Chen, A., Eisch, A., Sakai, N., Takahashi, M., Nestler, E. J., Duman, R. S. (2001) Regulation of GFRα-1 and GFRα-2 mRNAs in rat brain by electroconvulsive seizure. Synapse 39, 1–9.CrossRefGoogle Scholar
  8. Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J.-F., Young, L. T. (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiat. 50, 260–265.PubMedCrossRefGoogle Scholar
  9. Chlan-Fourney, J., Ashe, P., Nylen, K., Juorio, A. V., Li, X.-M. (2002) Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res. 954, 11–20.PubMedCrossRefGoogle Scholar
  10. Conti, A., Cryan, J. F., Dalvi, A., Lucki, L., Blendy, J. A. (2002) CREB is essential for the upregulation of BDNF transcription, but not the behavioral or endocrine responses to antidepressant drugs. J. Neurosci. 22, 3262–3268.PubMedGoogle Scholar
  11. Coppell, A., Pei, Q., Zetterstron, T. S. C. (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44, 903–910.PubMedCrossRefGoogle Scholar
  12. Cotter, D., Mackay, D., Landau, S., Kerwin, R., Everall, I. (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch. Gen. Psychiatry 58, 545–553.PubMedCrossRefGoogle Scholar
  13. Czeh, B., Michaelis, T., Watanabe, T., et al. (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl. Acad. Sci. 98, 12796–12801.PubMedCrossRefGoogle Scholar
  14. Dias, B., Banerjee, S. B., Duman, R. S., Vaidya, V. A. (2003) Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacol. 45, 553–563.CrossRefGoogle Scholar
  15. Dowlatshahi, D., MacQueen, G. M., Wang, J. F., Young, L. T. (1998) Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet. 352, 1754–1755.PubMedCrossRefGoogle Scholar
  16. Drevets, W. C., Price, J. L., Simpson, J. R., et al. (1997) Subtenial prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827.PubMedCrossRefGoogle Scholar
  17. Duman, R., Heninger, G. R., Nestler, E. J. (1997) A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606.PubMedGoogle Scholar
  18. Duman, R., Malberg, J., Nakagawa, S., D’Sa, C. (2000) Neuronal plasticity and survival in mood disorders. Biol. Psychiatry 48, 732–739.PubMedCrossRefGoogle Scholar
  19. Duman, R., Malberg, J., Nakagawa, S. (2001a) Regulation of adult neurogenesis by psychotropic drugs and stress. JPET. 299, 401–407.Google Scholar
  20. Duman, R., Nakagawa, S., Malberg, J. (2001b) Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25, 836–844.PubMedCrossRefGoogle Scholar
  21. Dwivedi, Y., Rao, J. S., Hooriyah, S. R., et al. (2003) Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Arch. Gen. Psychiatry 60, 273–282.PubMedCrossRefGoogle Scholar
  22. Dwivedi, Y., Rizavi, H. S., Roberts, R. C., Conley, R. C., Tamminga, C. A., Pandey, G. N. (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J. Neurochem. 77, 916–928.PubMedCrossRefGoogle Scholar
  23. Egan, M., Kojima, M., Callicott, J. H., et al. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269.PubMedCrossRefGoogle Scholar
  24. Fujimaki, K., Morinobu, S., Duman, R. S. (2000) Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 22, 42–51.PubMedCrossRefGoogle Scholar
  25. Gilbertson, M., Shenton, M. E., Ciszewski, A., et al. (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5, 1242–1247.PubMedCrossRefGoogle Scholar
  26. Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. M., Fuchs, E. (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17, 2492–2498.PubMedGoogle Scholar
  27. Gould, E., Tanapat, P., McEwen, B. S., Flugge, G., Fuchs, E. (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. USA. 95, 3168–3171.PubMedCrossRefGoogle Scholar
  28. Katoh-Semba, R., Asano, T., Ueda, H., et al. (2001) Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J. 16, 1328–1330.Google Scholar
  29. Lee, H., Kim, J. W., Yim, S. V., et al. (2001) Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol. Psychiatry 6, 725–728.CrossRefGoogle Scholar
  30. Lee, K., Lynch, K. R., Nguyen, T., et al. (2000) Cloning and characterization of additional members of the G protein-coupled receptor family. Biochim. Biophys. Acta 1490, 311–323.PubMedGoogle Scholar
  31. Li, X., Tizzano, J. P., Griffey, K., Clay, M., Lindstron, T., Skolnick, P. (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40, 1028–1033.PubMedCrossRefGoogle Scholar
  32. Liu, D., Diorio, J., Day, J. C., Francis, D. D., Meaney, M. J. (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3, 799–806.PubMedCrossRefGoogle Scholar
  33. MacQueen, G., Campbell, S., McEwen, B. S., et al. (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proc. Natl. Acad. Sci. 100, 1387–1392.PubMedCrossRefGoogle Scholar
  34. Madsen, T., Treschow, A., Bengzon, J., Bolwig, T. G., Lindvall, O., Tingström, A. (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol. Psychiat. 47, 1043–1049.PubMedCrossRefGoogle Scholar
  35. Malberg, J., and Duman, R. S. (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 38, 1562–1571.CrossRefGoogle Scholar
  36. Malberg, J., Eisch, A. J., Nestler, E. J., Duman, R. S. (2000) Chronic antidepressant treatment increases neurogenesis in adult hippocampus. J. Neurosci. 20, 9104–9110.PubMedGoogle Scholar
  37. Mallei, A., Shi, B., Mocchetti, I. (2002) Antidepressant treatments induce the expression of basic fibroblast growth factor in cortical and hippocampal neurons. Mol. Pharmacol. 61, 1017–1024.PubMedCrossRefGoogle Scholar
  38. Mamounas, L., Altar, C. A., Blue, M. E., Kaplan, D. R., Tessarollo, L., Lyons, W. E. (2000) BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J. Neurosci. 20, 771–782.PubMedGoogle Scholar
  39. Mamounas, L., Blue, M. E., Siuciak, J. A., Anthony, A. C. (1995) BDNF promotes the survival and sprouting of serotonergic axons in the rat brain. J. Neurosci. 15, 7929–7939.PubMedGoogle Scholar
  40. Manev, H., Uz, T., Smalheiser, N. R., Manev, R. (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur. J. Pharmacol. 411, 67–70.PubMedCrossRefGoogle Scholar
  41. Manji, H., and Duman, R. S. (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol. Bull. 35, 5–49.PubMedGoogle Scholar
  42. Manji, H., Drevets, W. C., Charney, D. S. (2001) The cellular neurobiology of depression. Nat. Med. 7, 541–547.PubMedCrossRefGoogle Scholar
  43. Marvanova, M., Lakso, M., Pirhonen, J., Nawa, H., Wong, G., Castren, E. (2001) The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell Neurosci. 18, 247–258.PubMedCrossRefGoogle Scholar
  44. McEwen, B. (1999) Stress and hippocampal plasticity. Curr. Opin. Neurobiol. 5, 205–216.CrossRefGoogle Scholar
  45. Monteggia, L., Barrot, C., Steffen, C., et al. (2002) An inducible gene knockout system: the role of BDNF in the adult brain [abstract 902.17.]. Soc. Neuros. Sci. 28, abstract.Google Scholar
  46. Muller, M., Lucassen, P. J., Yassouridis, A., Hoogendijk, J. G., Holsboer, F., Swabb, D. F. (2001) Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur. J. Neurosci. 14, 1603–1612.PubMedCrossRefGoogle Scholar
  47. Murray, C. A., McGahon, B., McBennett, S., Lynch, M. A. (1997) Interleukin-1β inhibits glutamate release in hippocampus of young, but not abed, rats. Neurobiol. Aging 18, 343–348.PubMedCrossRefGoogle Scholar
  48. Murray, C. A., and Lynch, M. A. (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1β is a common rigger for age- and stress-induced impairments in long-term potentiation. J. Neurosci. 18, 2974–2981.PubMedGoogle Scholar
  49. Nakagawa, S., Kim, J.-E., Lee, R., Chen, J., Fujioka, T., Malberg, J. (2002b) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J. Neurosci. 22, 9868–9876.PubMedGoogle Scholar
  50. Nakagawa, S., Kim, J.-E., Lee, R., et al. (2002a) Regulation of neurogenesis in adult mouse hippocampus by cAMP and cAMP response element-binding protein. J. Neurosci. 22, 3673–3682.PubMedGoogle Scholar
  51. Nestler, E., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., Monteggia, L. M. (2002) Neurobiology of fepression. Neuron 34, 133–325.CrossRefGoogle Scholar
  52. Newton, S. S., Collier, E., Hunsberger, J., Adams, D., Salvanayagam, E., Duman, R. S. (2003) Gene profile of electroconvulsive seizures: induction of neurogenic and angiogenic factors. J. Neuroscience 23, 10,841–10,851.Google Scholar
  53. Nibuya, M., Morinobu, S., Duman, R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.PubMedGoogle Scholar
  54. Nibuya, M., Nestler, E. J., Duman, R.S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372.PubMedGoogle Scholar
  55. Nibuya, M., Takahashi, M, Russell, D. S., Duman, R. S. (1999) Chronic stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci. Lett. 267, 81–84.PubMedCrossRefGoogle Scholar
  56. Ongur, D., Drevets, W. C., Price, J. L. (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc. Natl. Acad. Sci. USA. 95, 13290–13295.PubMedCrossRefGoogle Scholar
  57. Radley, J. J. and Jacobs, B. L. (2002) 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res. 955, 264–267.PubMedCrossRefGoogle Scholar
  58. Rajkowska, G., Miguel-Hidalgo, J. J., Wei, J., et al. (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry 45, 1085–1098.PubMedCrossRefGoogle Scholar
  59. Rasmussen, A., Shi, L., Duman, R. S. (2002) Down-regulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27, 133–142.CrossRefGoogle Scholar
  60. Roceri, M., Hendriks, W., Racagni, G., Ellenbroek, B. A., Riva, M. A. (2002) Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol. Psychiatry 7, 609–616.PubMedCrossRefGoogle Scholar
  61. Russo-Neustadt, A., Beard, R. C., Huang, Y. M., Cotman, C. W. (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101, 305–312.PubMedCrossRefGoogle Scholar
  62. Russo-Neustadt, A. B. R., and Cotman, C. W. (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.PubMedCrossRefGoogle Scholar
  63. Saarelainen, T., Hendolin, P., Lucas, G., et al. (2003) Activation of the trkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23, 349–357.PubMedGoogle Scholar
  64. Santarelli, L., Saxe, M., Gross, C., et al. (2003) Requirement of hippocampal neurogenisis for the behavioral effects of antidepressants. Science 301, 805–809.PubMedCrossRefGoogle Scholar
  65. Sheline, Y., Gado, M. H., Kraemer, H. C. (2003) Untreated depression and hippocampal volume loss. Am. J. Psychiatry 160, 1–3.CrossRefGoogle Scholar
  66. Sheline, Y., Gado, M. H., Price, J. L. (1998) Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 9, 2023–2028.PubMedCrossRefGoogle Scholar
  67. Sheline, Y., Sanghavi, M., Mintun, M. A., Gado, M. H. (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci. 19, 5034–5043.PubMedGoogle Scholar
  68. Sheline, Y., Wany, P., Gado, M. H., Csernansky, J. G., Vannier, M. W. (1996) Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. USA. 93, 3908–3913.PubMedCrossRefGoogle Scholar
  69. Shimizu, E., Hashimoto, K., Olamura, N., et al. (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiat. 54, 70–75.PubMedCrossRefGoogle Scholar
  70. Shirayama, Y., Chen, A. C.-H., Nakagawa, S., Russell, R. S., Duman, R. S. (2002) Brain derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261.PubMedGoogle Scholar
  71. Sklar, P., Gabriel, S. B., McInnis, M. G., et al. (2002) Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol. Psychiatry. 7, 579–593.PubMedCrossRefGoogle Scholar
  72. Smith, M., Zhang, L.-X., Lyons, W. E., Mamounas, L. A. (1997) Anterograde transport of endogenous brain-derived neurotrophic factor in hippocampal mossy fibers. Neuro. Rep. 8, 1829–1834.Google Scholar
  73. Smith, M. A., Makino, S., Altemus, M., et al. (1995b) Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus ceruleus. Proc. Natl. Acad. Soc. USA. 92, 8788–8792.CrossRefGoogle Scholar
  74. Smith, M. A., Makino, S., Kvetnansky, R., Post, R.M. (1995a) Stress alters the express of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777.PubMedGoogle Scholar
  75. Tanapat, P., Hastings, N. B., Rydel, T. A., Galea, L. A. M., Gould, E. (2001) Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J. Compar. Neurol. 437, 496–504.CrossRefGoogle Scholar
  76. Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., Greenberg, M. E. (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726.PubMedCrossRefGoogle Scholar
  77. Thome, J., Sakai, N., Shin, K. H., et al. (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030–4036.PubMedGoogle Scholar
  78. Timmusk, T., Palm, K., Metsis, M., et al (1993) Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10, 475–489.PubMedCrossRefGoogle Scholar
  79. Ueyama, T., Kawai, Y., Nemoto, K., Sekimoto, M., Tone, S., Senba, E. (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci. Res. 28, 103–110.PubMedCrossRefGoogle Scholar
  80. Vaidya, V., Marek, G. J., Aghajanian, G. A., Duman, R. S. (1997) 5-HT2A receptor-mediated regulation of BDNF mRNA in the hippocampus and the neocortex. J. Neurosci. 17, 2785–2795.PubMedGoogle Scholar
  81. van der Hart M., Czeh, B., de Biurrun, G., et al. (2002) Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol. Psychiatry 7, 933–941.PubMedCrossRefGoogle Scholar
  82. van Praag H., Schlinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., Gage, F. H. (2002) Functional neurogenesis in the adult mouse dentate gyrus. Nature 415, 1030–1034.PubMedCrossRefGoogle Scholar
  83. Vermetten, E., Vythilingam, M., Southwick, S. M., Charney, D. S., Bremner, J. D. (2003) Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol. Psych. 54, 693–702.CrossRefGoogle Scholar
  84. Watanabe, Y., Gould, E., McEwen, B. S. (1992b) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588, 341–345.PubMedCrossRefGoogle Scholar
  85. Weickert, C., Hyde, T. M., Lipska, B. K., Herman, M. M., Weinberger, D. R., Kleinman, J. E. (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol. Psychiatry 8, 592–610.PubMedCrossRefGoogle Scholar
  86. Xu, H., Richardson, J. S., Li, X.-M. (2003b) Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 28, 53–62.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Division of Molecular Psychiatry, Departments of Psychiatry and PharmacologyYale University School of MedicineNew Haven

Personalised recommendations