NeuroMolecular Medicine

, Volume 2, Issue 2, pp 89–99 | Cite as

Fast axonal transport misregulation and Alzheimer’s Disease

  • Gerardo Morfini
  • Gustavo Pigino
  • Uwe Beffert
  • Jorge Busciglio
  • Scott T. Brady


Pathological alterations in the microtubule-associated protein (MAP) tau are well-established in a number of neurodegenerative disorders, including Alzheimer’s Disease (AD), frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), and others. Tau protein and in some cases, neurofilament subunits exhibit abnormal phosphorylation on specific serine and threonine residues in these diseases. A large body of biochemical, genetic, and cell biological evidence implicate two major serine-threonine protein kinases, glycogen synthase kinase 3 (GSK-3) and cyclin-dependent kinase 5 (CDK5) as major kinases responsible for both normal and pathological phosphorylation of tau protein in vivo. What remains unclear is whether tau phosphorylation and/or neurofibrillary tangle (NFT) formation are causal or secondary to initiation of neuronal pathology. In fact, many studies have indicated that tau misphosphorylation is not the causal event. Interestingly, some of these kinase and phosphatase activities have recently merged as key regulators of fast axonal transport (FAT). Specifically, CDK5 and GSK-3 have been recently shown to regulate kinesin-driven motility. Given the essential role of FAT in neuronal function, an alternate model for pathogenesis can be proposed. In this model, misregulation of FAT induced by an imbalance in specific kinase-phosphatase activities within neurons represents an early and critical step for the initiation of neuronal pathology. Such a model may explain many of the unique characteristics of late onset of neurological diseases such as AD.

Index Entries

Kinesin fast axonal transport CDK5 GSK-3 glycogen synthase kinase 3 Alzheimer’s disease presenilins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augustinack J. C., Schneider A., Mandelkow E. M., and Hyman B. T. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. (Berl) 103, 26–35.CrossRefGoogle Scholar
  2. Bales K. R., Verina T., Dodel R. C., Du Y., Altstiel L., Bender M., et al. (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263–264.PubMedCrossRefGoogle Scholar
  3. Baum L., Hansen L., Masliah E., and Saitoh T. (1996) Glycogen synthase kinase 3 alteration in Alzheimer disease is related to neurofibrillary tangle formation. Mol. Chem. Neuropathol. 29, 253–261.PubMedCrossRefGoogle Scholar
  4. Bian F., Nath R., Sobocinski G., Booher R. N., Lipinski W. J., Callahan M. J., et al. (2002) Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J. Comp. Neurol. 446, 257–266.PubMedCrossRefGoogle Scholar
  5. Bloom G. S., Richards B. W., Leopold P. L., Ritchey D. M., and Brady S. T. (1993) GTPγS inhibits organelle transport along axonal microtubules. J. Cell Biol. 120, 467–476.PubMedCrossRefGoogle Scholar
  6. Bowman A. B., Kamal A., Ritchings B. W., Philp A. V., McGrail M., Gindhart J. G., et al. (2000) Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594.PubMedCrossRefGoogle Scholar
  7. Braak E., Braak H., and Mandelkow E. M. (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. (Berl) 87, 554–567.Google Scholar
  8. Brady S. T. (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75.PubMedCrossRefGoogle Scholar
  9. Brady S. T. (1995) A kinesin medley: Biochemical and functional heterogeneity. Trends Cell Biol. 5, 159–164.PubMedCrossRefGoogle Scholar
  10. Brady S. T. and Pfister K. K. (1991) Kinesin interactions with membrane bounded organelles in vivo and in vitro, in Motor Proteins (Kendrick-Jones J. and Cross R. A., eds.), The Company of Biologists, Ltd., Cambridge, England, Vol. 14, pp. 103–108.Google Scholar
  11. Brady S. T. and Sperry A. O. (1995) Biochemical and functional diversity of microtubule motors in the nervous system. Curr. Opin. Neurobiol. 5, 551–558.PubMedCrossRefGoogle Scholar
  12. Brion J. P., Anderton B. H., Authelet M., Dayanandan R., Leroy K., Lovestone S., et al. (2001) Neurofibrillary tangles and tau phosphorylation. Biochem. Soc. Symp. 81–88.Google Scholar
  13. Busciglio J., Lorenzo A., Yeh J., and Yankner B. A. (1995) beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888.PubMedCrossRefGoogle Scholar
  14. Busciglio J., Yeh J., and Yankner B. A. (1993) beta-Amyloid neurotoxicity in human cortical culture is not mediated by excitotoxins. J. Neurochem. 61, 1565–1568.PubMedCrossRefGoogle Scholar
  15. Cook D., Fry M. J., Hughes K., Sumathipala R., Woodgett J. R., and Dale T. C. (1996) Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J. 15, 4526–4536.PubMedGoogle Scholar
  16. Cross D. A., Watt P. W., Shaw M., van der Kaay J., Downes C. P., Holder J. C., et al. (1997) Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett. 406, 211–215.PubMedCrossRefGoogle Scholar
  17. Cyr J. L. and Brady S. T. (1992) Molecular motors in axonal transport: cellular and molecular biology of kinesin. Mol. Neurobiol. 6, 137–156.PubMedGoogle Scholar
  18. Cyr J. L., Pfister K. K., Bloom G. S., Slaughter C. A., and Brady S. T. (1991) Molecular genetics of kinesin light chains: Generation of isoforms by alternative splicing. Proc. Natl. Acad. Sci. USA 88, 10,114–10,118.CrossRefGoogle Scholar
  19. Eldar-Finkelman, H. (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol. Med. 8, 126–132.PubMedCrossRefGoogle Scholar
  20. Eldar-Finkelman H., Schreyer S. A., Shinohara M. M., LeBoeuf R. C., and Krebs E. G. (1999) Increased glycogen synthase kinase-3 activity in diabetes-and obesity-prone C57BL/6J mice. Diabetes 48, 1662–1666.PubMedCrossRefGoogle Scholar
  21. Elluru R., Bloom G. S., and Brady S. T. (1995) Fast axonal transport of kinesin in the rat visual system: functionality of the kinesin heavy chain isoforms. Mol. Biol. Cell 6, 21–40.PubMedGoogle Scholar
  22. Elyaman W., Terro F., Wong N. S., and Hugon J. (2002) In vivo activation and nuclear translocation of phosphorylated glycogen synthase kinase-3beta in neuronal apoptosis: links to tau phosphorylation. Eur. J. Neurosci. 15, 651–660.PubMedCrossRefGoogle Scholar
  23. Ferreira A., Niclas J., Vale R. D., Banker G., and Kosik K. S. (1992) Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J Cell Biol. 117, 595–606.PubMedCrossRefGoogle Scholar
  24. Flaherty D. B., Soria J. P., Tomasiewicz H. G., and Wood J. G. (2000) Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants. J. Neurosci. Res. 62, 463–472.PubMedCrossRefGoogle Scholar
  25. Furukawa K., D’Souza I., Crudder C. H., Onodera H., Itoyama Y., Poorkaj P., et al. (2000) Pro-apoptotic effects of tau mutations in chromosome 17 frontotemporal dementia and parkinsonism. Neuroreport 11, 57–60.PubMedCrossRefGoogle Scholar
  26. Gonzalez-Yanes C. and Sanchez-Margalet V. (2001) Pancreastatin, a chromogranin-A-derived peptide, inhibits insulin-stimulated glycogen synthesis by activating GSK-3 in rat adipocytes. Biochem. Biophys. Res. Commun. 289, 282–287.PubMedCrossRefGoogle Scholar
  27. Gotz J. (2001) Tau and transgenic animal models. Brain Res. Brain Res. Rev. 35, 266–286.PubMedCrossRefGoogle Scholar
  28. Gotz J., Barmettler R., Ferrari A., Goedert M., Probst A., and Nitsch R. M. (2000) In vivo analysis of wild-type and FTDP-17 tau transgenic mice. Ann. NY Acad. Sci. 920, 126–133.PubMedCrossRefGoogle Scholar
  29. Haass C. and De Strooper B. (1999) The presenilins in Alzheimer’s disease—proteolysis holds the key. Science 286, 916–919.PubMedCrossRefGoogle Scholar
  30. Hanger D. P., Hughes K., Woodgett J. R., Brion J. P., and Anderton B. H. (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58–62.PubMedCrossRefGoogle Scholar
  31. Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al. (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491.PubMedCrossRefGoogle Scholar
  32. Hirokawa N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526.PubMedCrossRefGoogle Scholar
  33. Hollenbeck P. J. (1990) Kinesin heavy and light chains are phosphorylated in vivo in neurons. J. Cell Biol. 115, 390a (abstract).Google Scholar
  34. Houlden H., Baker M., Adamson J., Grover A., Waring S., Dickson D., et al. (1999) Frequency of tau mutations in three series of non-Alzheimer’s degenerative dementia. Ann. Neurol. 46, 243–248.PubMedCrossRefGoogle Scholar
  35. Ikeda S., Kishida S., Yamamoto H., Murai H., Koyama S., and Kikuchi A. (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 17, 1371–1384.PubMedCrossRefGoogle Scholar
  36. Ishiguro K., Shiratsuchi A., Sato S., Omori A., Arioka M., Kobayashi S., et al. (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 325, 167–172.PubMedCrossRefGoogle Scholar
  37. Ivaska J., Nissinen L., Immonen N., Eriksson J., Kahari V. M., and Heino J. (2002) Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Mol. Cell Biol. 22, 1352–1359.PubMedCrossRefGoogle Scholar
  38. Jackson G. R., Wiedau-Pazos M., Sang T. K., Wagle N., Brown C. A., Massachi S., et al. (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in drosophila. Neuron 34, 509–519.PubMedCrossRefGoogle Scholar
  39. Kamal A., Almenar-Queralt A., LeBlanc J. F., Roberts E. A., and Goldstein L. S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414, 643–648.PubMedCrossRefGoogle Scholar
  40. Kamal A., Stokin G. B., Yang Z., Xia C. H., and Goldstein L. S. (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459.PubMedCrossRefGoogle Scholar
  41. Khodjakov A., Lizunova E. M., Minin A. A., Koonce M. P., and Gyoeva F. K. (1998) A specific light chain of kinesin associates with mitochondria in cultured cells. Mol. Biol. Cell 9, 333–343.PubMedGoogle Scholar
  42. Krylova O., Messenger M. J., and Salinas P. C. (2000) Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3b. J. Cell Biol. 151, 83–94.PubMedCrossRefGoogle Scholar
  43. Laffont I., Takahashi M., Shibukawa Y., Honke K., Shuvaev V. V., Siest G., et al. (2002) Apolipoprotein E activates Akt pathway in neuro-2a in an isoform-specific manner. Biochem. Biophys. Res. Commun. 292, 83–87.PubMedCrossRefGoogle Scholar
  44. LaMonte B. H., Wallace K. E., Holloway B. A., Shelly S. S., Ascaño J., Tokito M., et al. (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727.PubMedCrossRefGoogle Scholar
  45. Lasek R. J. and Brady S. T. (1982) The Structural Hypothesis of axonal transport: Two classes of moving elements. In Axoplasmic Transport (Weiss D. G., ed.), Springer-Verlag, Berlin/Heidelberg, pp. 397–405.Google Scholar
  46. Lasek R. J. and Brady S. T. (1984) Adenylyl imido-diphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, produces a stable intermediate in the motility cycle of fast axonal transport. Biol. Bull. 167, 503.Google Scholar
  47. Lasek R. J. and Brady S. T. (1985) Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Nature 316, 645–647.PubMedCrossRefGoogle Scholar
  48. Lee K.-D. and Hollenbeck, P. J. (1995) Phosphorylation of kinesin in vivo correlates with organelle association and neurite outgrowth. J. Biol. Chem. 270, 5600–5605.PubMedCrossRefGoogle Scholar
  49. Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., et al. (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405.PubMedCrossRefGoogle Scholar
  50. Li B. S., Daniels M. P., and Pant H. C. (2001) Integrins stimulate phosphorylation of neurofilament NF-M subunit KSP repeats through activation of extracellular regulated-kinases (Erk1/Erk2) in cultured motoneurons and transfected NIH 3T3 cells. J. Neurochem. 76, 703–710.PubMedCrossRefGoogle Scholar
  51. Li B. S., Zhang L., Takahashi S., Ma W., Jaffe H., Kulkarni A. B., et al. (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J. 21, 324–333.PubMedCrossRefGoogle Scholar
  52. Lovestone S., Hartley C. L., Pearce J., and Anderton B. H. (1996) Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73, 1145–1157.PubMedCrossRefGoogle Scholar
  53. Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R., and Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 20, 27–39.PubMedCrossRefGoogle Scholar
  54. Mandelkow E. (1999) Alzheimer’s disease. The tangled tale of tau. Nature 402, 588–589.PubMedCrossRefGoogle Scholar
  55. Mandelkow E., Song Y. H., Schweers O., Marx A., and Mandelkow E. M. (1995) On the structure of microtubules, tau, and paired helical filaments. Neurobiol. Aging 16, 347–354.PubMedCrossRefGoogle Scholar
  56. Mandelkow E. M., Drewes G., Biernat J., Gustke N., Van Lint J., Vandenheede J. R., et al. (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett. 314, 315–321.PubMedCrossRefGoogle Scholar
  57. Marambaud P., Alves da Costa C., Ancolio K., and Checler F. (1998) Alzheimer’s disease-linked mutation of presenilin 2 (N141I-PS2) drastically lowers APPalpha secretion: control by the proteasome. Biochem. Biophys. Res. Commun. 252, 134–138.PubMedCrossRefGoogle Scholar
  58. Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.PubMedGoogle Scholar
  59. McGuinness T. L., Brady S. T., Gruner J., Sugimori M., Llinas R., and Greengard P. (1989) Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm. J. Neurosci. 9, 4138–4149.PubMedGoogle Scholar
  60. Morfini G., Quiroga S., Rosa A., Kosik K., and Caceres A. (1997) Suppression of KIF2 in PC12 cells alters the distribution of a growth cone nonsynaptic membrane receptor and inhibits neurite extension. J. Cell Biol. 138, 657–669.PubMedCrossRefGoogle Scholar
  61. Morfini G., Szebenyi G., Elluru R., Ratner N., and Brady S. T. (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 23, 281–293.CrossRefGoogle Scholar
  62. Morfini G., Szebenyi G., Richards B., and Brady S. T. (2001) Regulation of kinesin: implications for neuronal development. Dev. Neurosci. 23, 364–376.PubMedCrossRefGoogle Scholar
  63. Morfini G., Tsai M., Szebenyi G., and Brady S. T. (2000) Approaches to study interactions between kinesin motors and membranes, in Kinesin Protocols (Vernos I., ed.), Humana Press, Totowa, NJ, Vol. 164, pp. 147–162.CrossRefGoogle Scholar
  64. Morris J. C. and Price A. L. (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci. 17, 101–118.PubMedCrossRefGoogle Scholar
  65. Naruse S., Thinakaran G., Luo J. J., Kusiak J. W., Tomita T., Iwatsubo T., et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221.PubMedCrossRefGoogle Scholar
  66. Pei J. J., Tanaka T., Tung Y. C., Braak E., Iqbal K., and Grundke-Iqbal I. (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70–78.PubMedCrossRefGoogle Scholar
  67. Pigino G., Pelsman A., Mori H., and Busciglio J. (2001) Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J. Neurosci. 21, 834–842.PubMedGoogle Scholar
  68. Plyte S. E., Hughes K., Nikolakaki E., Pulverer B. J., and Woodgett J. R. (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim. Biophys. Acta 1114, 147–162.PubMedGoogle Scholar
  69. Ratner N., Bloom G. S., and Brady S. T. (1998) A role for Cdk5 kinase in fast anterograde axonal transport: novel effects of olomoucine and the APC tumor suppressor protein. J. Neurosci. 18, 7717–7726.PubMedGoogle Scholar
  70. Saxton W. M., Hicks J., Goldstein L. S. B., and Raff E. C. (1991) Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell 64, 1093–1102.PubMedCrossRefGoogle Scholar
  71. Sperber B. R., Leight S., Goedert M., and Lee V. M. (1995) Glycogen synthase kinase-3 beta phosphorylates tau protein at multiple sites in intact cells. Neurosci. Lett. 197, 149–153.PubMedCrossRefGoogle Scholar
  72. Stenoien D. S. and Brady S. T. (1997) Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675–689.PubMedGoogle Scholar
  73. Su J. H., Nichol K. E., Sitch T., Sheu P., Chubb C., Miller B. L., et al. (2000) DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp. Neurol. 163, 9–19.PubMedCrossRefGoogle Scholar
  74. Summers S. A., Kao A. W., Kohn A. D., Backus G. S., Roth R. A., Pessin J. E., et al. (1999) The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J. Biol. Chem. 274, 17,934–17,940.Google Scholar
  75. Sun W., Qureshi H. Y., Cafferty P. W., Sobue K., Agarwal-Mawal A., Neufield K. D., et al. (2002) Glycogen synthase kinase-3beta is complexed with tau protein in brain microtubules. J. Biol. Chem. 277, 11,933–11,940.Google Scholar
  76. Takashima A., Honda T., Yasutake K., Michel G., Murayama O., Murayama M., et al. (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci. Res. 31, 317–323.PubMedCrossRefGoogle Scholar
  77. Tanaka Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A., et al. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158.PubMedCrossRefGoogle Scholar
  78. Tsai M.-Y., Morfini G., Szebenyi G., and Brady S. T. (2000) Modulation of kinesin-vesicle interactions by Hsc70: implications for regulation of fast axonal transport. Mol. Biol. Cell 11, 2161–2173.PubMedGoogle Scholar
  79. Vale R. D., Reese T. S., and Sheetz M. P. (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50.PubMedCrossRefGoogle Scholar
  80. Wagner M. C., Pfister K. K., Bloom G. S., and Brady S. T. (1989) Copurification of kinesin polypeptides with microtubule-stimulated Mg-ATPase activity and kinetic analysis of enzymatic processes. Cell Motil. Cytoskelet. 12, 195–215.CrossRefGoogle Scholar
  81. Wang Q. M., Fiol C. J., DePaoli-Roach A. A., and Roach P. J. (1994) Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J. Biol. Chem. 269, 14,566–14,574.Google Scholar
  82. Wittmann C. W., Wszolek M. F., Shulman J. M., Salvaterra P. M., Lewis J., Hutton M., et al. (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714.PubMedCrossRefGoogle Scholar
  83. Woodgett J. R. (1994) Regulation and functions of the glycogen synthase kinase-3 subfamily. Semin. Cancer Biol. 5, 269–275.PubMedGoogle Scholar
  84. Woodgett J. R. (2001) Judging a Protein by More Than Its Name: GSK-3. Science’s STKE,;2001/100/re12.Google Scholar
  85. Yamaguchi H., Ishiguro K., Uchida T., Takashima A., Lemere C. A., and Imahori K. (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol. (Berl) 92, 232–241.CrossRefGoogle Scholar
  86. Yost C., Farr G. H. 3rd, Pierce S. B., Ferkey D. M., Chen M. M., and Kimelman D. (1998) GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93, 1031–1041.PubMedCrossRefGoogle Scholar
  87. Zhao C., Takita J., Tanaka Y., Setou M., Nakagawa T., Takeda S., et al. (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587–597.PubMedCrossRefGoogle Scholar
  88. Zheng-Fischhofer Q., Biernat J., Mandelkow E. M., Illenberger S., Godemann R., and Mandelkow E. (1998) Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur. J. Biochem. 252, 542–552.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Gerardo Morfini
    • 3
  • Gustavo Pigino
    • 2
  • Uwe Beffert
    • 1
  • Jorge Busciglio
    • 2
  • Scott T. Brady
    • 3
  1. 1.Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallas
  2. 2.Department of NeuroscienceUniversity of Connecticut Health CenterFarmington
  3. 3.Dept. of Cell BiologyUniversity of Texas Southwestern Medical Ctr.Dallas

Personalised recommendations