NeuroMolecular Medicine

, Volume 2, Issue 1, pp 71–85 | Cite as

Methamphetamine-induced TNF-α gene expression and activation of AP-1 in discrete regions of mouse brain

Potential role of reactive oxygen intermediates and lipid peroxidation
  • Govinder Flora
  • Yong Woo Lee
  • Avindra Nath
  • William Maragos
  • Bernhard Hennig
  • Michal Toborek
Original Research


Cellular and molecular mechanisms of methamphetamine (METH)-induced neurotoxicity may involve alterations of cellular redox status and induction of inflammatory genes. To study this hypothesis, molecular signaling pathways of METH-induced inflammatory responses via activation of redox-sensitive transcription factors were investigated in discrete regions (corpus striatum, frontal cortex, and hippocampus) of mouse brain. Intraperitoneal injection of METH at a dose of 10 mg/kg body weight resulted in a significant increase in oxidative stress, as measured by 2,7-dichlorofluorescein (DCF) fluorescence assay, thiobarbituric acid-reactive substances (TBARS), and total glutathione levels. Glutathione peroxidase activity was also significantly increased after METH exposure. In addition, DNA binding activity of activator protein-1 (AP-1), a redox-responsive transcription factor, was increased in all studied brain regions in response to METH treatment. Because AP-1 is known to regulate expression of inflammatory genes, levels of TNF-α mRNA were also studied. Expression of the tumor necrosis factor-α (TNF-α) gene was induced 3 h after METH injection and remained elevated for up to 6h of METH exposure. In addition, stimulation of the TNF-α gene was associated with increased TNF-α protein production in the frontal cortex. These results suggest that METH-induced disturbances in cellular redox status and that activation of AP-1 can play a critical role in signaling pathways leading to upregulation of inflammatory genes in vivo. Furthermore, these data provide evidence for the role of oxidative stress in the neurotoxic effects of METH.

Index Entries

Methamphetamine oxidative stress transcription factors AP-1 TNF-α mice brain regions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acikgoz O., Gonenc S., Kayatekin B. M., Pekcetin C., Uysal N., Dayi A., Semin I., and Gure A. (2000) The effects of single dose of methamphetamine on lipid peroxidation levels in the rat striatum and prefrontal cortex. Eur. Neuropsychopharmacol. 10, 415–418.PubMedCrossRefGoogle Scholar
  2. Akiyama K., Ishihara T., and Kashihara K. (1996) Effect of acute and chronic administration of methamphetamine on activator protein-1 binding activities in the rat brain regions. Ann. NY Acad. Sci. 801, 13–28.PubMedCrossRefGoogle Scholar
  3. Angel P. and Karin M. (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta. 1072, 129–157.PubMedGoogle Scholar
  4. Arrigo A. P. (1999) Gene expression and the thiol redox state. Free Radic. Biol. Med. 27, 936–944.PubMedCrossRefGoogle Scholar
  5. Asanuma M. and Cadet J. L. (1998) Methamphetamine-induced increase in striatal NF kappa B DNA binding activity is attenuated in superoxide dismutase transgenic mice. Mol. Brain Res. 60, 305–309.PubMedCrossRefGoogle Scholar
  6. Asanuma M., Hayashi T., Ordonez S. V., Ogawa N., and Cadet J. L. (2000) Direct interactions of methamphetamine with the nucleus. Brain Res. Mol. Brain Res. 80, 237–243.PubMedCrossRefGoogle Scholar
  7. Baker M. A., Cerniglia G. J., and Zaman A. (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 190, 360–365.PubMedCrossRefGoogle Scholar
  8. Beckman J. S. and Koppenol W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424-C1437.PubMedGoogle Scholar
  9. Beg A. A., Finco T. S., Nantermet P. V., and Baldwin A. S. Jr (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκB alpha: a mechanism for NFκB activation. Mol. Cell. Biol. 13, 3301–3310.PubMedGoogle Scholar
  10. Berman S. B. and Hastings T. G. (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73, 1127–1137.PubMedCrossRefGoogle Scholar
  11. Beutler E. (1989) Nutritional and metabolic aspects of glutathione. Annu. Rev. Nutr. 9, 287–302.PubMedCrossRefGoogle Scholar
  12. Brown L. A. (1994) Glutathione protects signal transduction in type II cells under oxidant stress. Am. J. Physiol. 266, L172-L177.PubMedGoogle Scholar
  13. Cadet J. L., Sheng P., Ali S., Rothman R., Carlson E., and Epstein C. (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J. Neurochem. 62, 380–383.PubMedCrossRefGoogle Scholar
  14. Couceyro P. and Douglass J. (1995) Precipitated morphine withdrawal stimulates multiple activator protein-1 signaling pathways in rat brain. Mol. Pharmacol. 47, 29–39.PubMedGoogle Scholar
  15. De Vito M. J. and Wagner G. C. (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28, 1145–1150.PubMedCrossRefGoogle Scholar
  16. Desai A., Huang X., and Warren J. S. (1999) Intracellular glutathione redox status modulates MCP-1 expression in pulmonary granuloamatous vasculitis. Lab. Invest. 79, 837–847.PubMedGoogle Scholar
  17. Eisch A. J. and Marshall J. F. (1998) Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse 30, 433–445.PubMedCrossRefGoogle Scholar
  18. Flohe L. and Gunzler W. A. (1984) Glutathione Peroxidase, in Methods in Enzymology (Packer L., ed.), Academic Press, Orlando, FL, pp. 115–121.Google Scholar
  19. Fumagalli F., Gainetdinov R. R., Valenzano K. J., and Caron M. J. (1998) Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J. Neurosci. 18, 4861–4869.PubMedGoogle Scholar
  20. Gibb J. W. and Kogan F. J. (1979) Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. Naunyn. Schmiedebergs. Arch. Pharmacol. 310, 185–187.PubMedCrossRefGoogle Scholar
  21. Giovanni A., Liang L. P., Hastings T. G., and Zigmond M. J. (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. 64, 1819–1825.PubMedCrossRefGoogle Scholar
  22. Glowinski J. and Iversen L. L. (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J. Neurochem. 13, 655–669.PubMedCrossRefGoogle Scholar
  23. Gluck M. R., Moy L. Y., Jayatilleke E., Hogan K. A., Manzino L., and Sonsalla P., K. (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J. Neurochem. 79, 152–160.PubMedCrossRefGoogle Scholar
  24. Harold C., Wallace T., Friedman R., Gudelsky G., and Yamamoto B. (2000) Methamphetamine selectively alters brain glutathione. Eur. J. Pharmacol. 400, 99–102.PubMedCrossRefGoogle Scholar
  25. Hebert M. A. and O’Callaghan J. P. (2000) Protein phosphorylation cascades associated with methamphetamine-induced glial activation. Ann. NY Acad. Sci. 914, 238–262.PubMedCrossRefGoogle Scholar
  26. Hirata H., Ladenheim B., Carlson E., Epstein C., and Cadet J. L. (1996) Autoradiographic evidence for methamphetamine-induced straital dopaminergic loss in mouse brain: attenuation in CuZn-Superoxide dismutase transgenic mice. Brain Res. 714, 95–103.PubMedCrossRefGoogle Scholar
  27. Hoyt K. R., Reynolds I. J., and Hastings T. G. (1997) Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp. Neurol. 143, 269–281.PubMedCrossRefGoogle Scholar
  28. Hughes P. and Dragunow M. (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol. Rev. 47, 133–178.PubMedGoogle Scholar
  29. Imam S. Z., el-Yazal J., Newport G. D., Itzhak Y., Cadet J. L., Slikker W. Jr., and Ali S. F. (2001a) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann. NY Acad. Sci. 939, 366–380.PubMedCrossRefGoogle Scholar
  30. Imam S. Z., Newport G. D., Itzhak Y., Cadet J. L., Islam F., Slikker W. Jr., and Ali S. F. (2001b) Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or over-expressing copper-zinc superoxide dismutase. J. Neurochem. 76, 745–749.PubMedCrossRefGoogle Scholar
  31. Itzhak Y. and Ali S. F. (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J. Neurochem. 67, 1770–1773.PubMedCrossRefGoogle Scholar
  32. Iwata-Ichikawa E., Kondo Y., Miyazaki I., Asanuma M., and Ogawa N. (1999) Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J. Neurochem. 72, 2334–2344.PubMedCrossRefGoogle Scholar
  33. Jayanthi S., Ladenheim B., and Cadet J. L. (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann. NY Acad. Sci. 844, 92–102.PubMedCrossRefGoogle Scholar
  34. Karin, M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16,483–16,486.Google Scholar
  35. Lakshminarayanan V., Drab-Weiss E. A., and Roebuck K. A. (1998) H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells J. Biol. Chem. 273, 32,670–32,678.CrossRefGoogle Scholar
  36. Lee Y. W., Hennig B., Yao J., and Toborek M. (2001) Methamphetamine induces AP-1 and NF-κB binding and transactivation in human brain endothelial cells. J. Neurosci. Res. 66, 583–591.PubMedCrossRefGoogle Scholar
  37. Love S. (1999) Oxidative stress in brain ischemia. Brain Pathol. 9, 119–131.PubMedCrossRefGoogle Scholar
  38. Mattson M. P., Barger S. W., Begley J. G., and Mark R. J. (1995) Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Meth. Cell Biol. 46, 187–215.Google Scholar
  39. McCann U. D., Wong D. F., Yokoi F., Villemagne V., Dannals R. F., and Ricaurte G. A. (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C] WIN-35,428 J. Neurosci. 18, 8417–8422.PubMedGoogle Scholar
  40. Miller M. A. (1991) Trends and patterns of methamphetamine smoking in Hawaii. NIDA Res. Monogr. 115, 72–83.PubMedGoogle Scholar
  41. Moszczynska A., Turenne S., and Kish S. J. (1998) Rat striatal levels of the antioxidant glutathione are decreased following binge administration of methamphetamine. Neurosci. Lett. 255, 49–52.PubMedCrossRefGoogle Scholar
  42. Nash J. F. and Yamamoto B. K. (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparision to 3,4-methylenedioxymethamphetamine. Brain Res. 581, 237–243.PubMedCrossRefGoogle Scholar
  43. O’Callaghan J. P. and Miller D. B. (1994) Neurotoxicity profiles of substituted amphetamines in the C57 BL/6 J mouse. J. Pharmacol. Exp. Ther. 270, 741–751.PubMedGoogle Scholar
  44. Ohkawa H., Ohishi N., and Yagi K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.PubMedCrossRefGoogle Scholar
  45. Premkumar D. R., Adhikary G., Overholt J. L., Simonson M. S., Cherniack N. S., and Prabhakar N. R. (2000) Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv. Exp. Med. Biol. 475, 101–109.PubMedGoogle Scholar
  46. Pulse Check. (2000) Trends in drug abuse, mid-year 2000. Office of National Drug Control Policy. Published online at Scholar
  47. Rahman I. and MacNee W. (1999) Lung Glutathione and oxidative stress: implications in cigarette smoke-induced airways disease. Am. J. Physiol. 277, L1067-L1088.PubMedGoogle Scholar
  48. Rhoades K. L., Golub S. H., and Economou J. S. (1992) The regulation of the human tumor necrosis factor alpha promoter region in macrophage, T cell, and B cell lines. J. Biol. Chem. 267, 22,102–22,107.Google Scholar
  49. Richman P. G. and Meister A. (1975) Regulation of gamma-glutamyl synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250, 1422–1426.PubMedGoogle Scholar
  50. Schreck R., Albermann K., and Baeuerle P. A. (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic. Res. Commun. 17, 221–237.PubMedGoogle Scholar
  51. Seiden L. S. (1985) Methamphetamine: toxicity to dopaminergic neurons. NIDA Res. Monogr. 62, 100–116.PubMedGoogle Scholar
  52. Seiden L. S. and Sabol K. E. (1996) Methamphetamine and methylenedioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction. NIDA Res. Monogr. 163, 251–276.PubMedGoogle Scholar
  53. Shandra A. A., Godlevsky L. S., Vastyanov R. S., Oleinik A. A., Konovalenko V. L., Rapoport E. N., and Korobka N. N. (2002) The role of TNF-α in amygdala kindled rats. Neurosci. Res. 42, 147–153.PubMedCrossRefGoogle Scholar
  54. Shaw K. P. (1999) Human methamphetamine-related fatalities in Taiwan during 1991–1996. J. Forensic Sci. 44, 27–31.PubMedGoogle Scholar
  55. Sheng P., Wang X. B., Ladenheim B., Epstein C., and Cadet J. L. (1996) AP-1 DNA binding activation by methamphetamine involves oxidative stress. Synapse 24, 213–217.PubMedCrossRefGoogle Scholar
  56. Smith T. S., Parker W. D. Jr., and Bennett J. P. Jr. (1994) L-Dopa increases nigral production of hydroxyl radicals in vivo: potential L-dopa toxicity. Neuroreport 5, 1009–1011.PubMedCrossRefGoogle Scholar
  57. Socci D. J., Bjugstad K. B., Jones H. C., Pattisapu J. V., and Arendash G. W. (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp. Neurol. 155, 109–117.PubMedCrossRefGoogle Scholar
  58. Srivastava S., Weitzmann M. N., Cenci S., Ross F. P., Adler S., and Pacifici R. (1999) Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. J. Clin. Invest. 104, 503–513.PubMedCrossRefGoogle Scholar
  59. Stephans S. E. and Yamamoto B. K. (1994) Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17, 203–209.PubMedCrossRefGoogle Scholar
  60. Suttorp N., Toepfer W., and Roka L. (1986) Antioxidant defense mechanisms of endothelial cells: glutathione redox cycle versus catalase. Am. J. Physiol. 252, C671-C680.Google Scholar
  61. Toborek M., Lee Y. W., Kaiser S., and Hennig B. (2002) Inflammatory properties of fatty acids, in Methods in Enzymology, vol 352 (Sen, C. K. and Packer L., eds.), Academic Press, pp. 198–219.Google Scholar
  62. Villemagne V., Yuan J., Wong D. F., Dannals R. F., Hatzidimitriou G., Mathews W. B., et al. (1998) Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J. Neurosci. 18, 419–427.PubMedGoogle Scholar
  63. Wilson J. M., Kalasinsky K. S., Levey A. I., Bergeron C., Reiber G., Anthony R. M., et al. (1996) Straital dopamine nerve terminal markers in human, chronic methamphetamine users. Nat. Med. 2, 699–703.PubMedCrossRefGoogle Scholar
  64. Woods J. S., Kavanagh T. J., Corral J., Reese A. W., Diaz D., and Ellis M. E. (1999) The role of glutathione in chronic adaptation to oxidative stress: studies in a normal rat kidney epithelial (NRK52E) cell model of sustained upregulation of glutathione biosynthesis. Toxicol. Appl. Pharmacol. 160, 207–216.PubMedCrossRefGoogle Scholar
  65. Wrona M. Z., Yang Z., Zhang F., and Dryhurst G. (1997) Potential new insights into the molecular mechanisms of methamphetamine-induced neurodegeneration. NIDA Res. Monogr. 173, 146–174.PubMedGoogle Scholar
  66. Xanthoudakis S., Miao G., Wang F., Pan Y. C., and Curran T. (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO. J. 11, 3323–3335.PubMedGoogle Scholar
  67. Yamamoto B. K. and Zhu W. (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J. Pharmacol. Exp. Ther. 287, 107–114.PubMedGoogle Scholar
  68. Yao J. N., Mackman N., Edgington T. S., and Fan S. T. (1997) Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NFκB transcription factors. J. Biol. Chem. 272, 17,795–17,801.Google Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Govinder Flora
    • 1
  • Yong Woo Lee
    • 1
  • Avindra Nath
    • 2
    • 3
  • William Maragos
    • 2
    • 4
  • Bernhard Hennig
    • 5
  • Michal Toborek
    • 1
  1. 1.Departments of SurgeryUniversity of KentuckyLexington
  2. 2.Departments of NeurologyUniversity of KentuckyLexington
  3. 3.Departments of Microbiology and ImmunologyUniversity of KentuckyLexington
  4. 4.Departments of Anatomy and NeurobiologyUniversity of KentuckyLexington
  5. 5.Departments of Animal SciencesUniversity of KentuckyLexington

Personalised recommendations