NeuroMolecular Medicine

, Volume 2, Issue 1, pp 61–69

The actin-binding domain of spinophilin is necessary and sufficient for targeting to dendritic spines

  • Stacie D. Grossman
  • Linda C. Hsieh-Wilson
  • Patrick B. Allen
  • Angus C. Nairn
  • Paul Greengard
Original Research


Spinophilin is enriched in dendritic spines, small protrusions of the postsynaptic membrane along the length of the dendrite that contain the majority of excitatory synapses. Spinophilin binds to protein phosphatase 1 with high affinity and targets it to dendritic spines, therefore placing it in proximity to regulate glutamate receptor activity. Spinophilin also binds to and bundles f-actin, the main cytoskeletal constituent of dendritic spines, and may therefore serve to regulate the structure of the synapse. In this study, we sought to determine the structural basis for the targeting of spinophilin to dendritic spines. Our results show that the actin-binding domain of spinophilin is necessary and sufficient for targeting of spinophilin to dendrites and dendritic spines.

Index Entries

Spinophilin Neurabin II dendritic spines actin postsynaptic density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen P. B., Ouimet C. C., and Greengard P. (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc. Natl. Acad. Sci. USA 94, 9956–9961.PubMedCrossRefGoogle Scholar
  2. Barnes A., Smith F., and Milgram S. (2001) Identification of a novel actin-binding site within spinophilin/neurabinII. Abstracts of the 41st annual Meeting of the American Society for Cell Biology.Google Scholar
  3. Burnett P. E., Blackshaw S., Lai M. M., Qureshi I. A., Burnett A. F., Sabatini D. M., et al. (1998) Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton. Proc. Natl. Acad. Sci. USA 95, 8351–8356.PubMedCrossRefGoogle Scholar
  4. Catala I., Ferrer I., Galofre E., and Fabregues I. (1988) Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia. A quantitative Golgi study on biopsy samples. Hum. Neurobiol. 6, 255–259.PubMedGoogle Scholar
  5. Craven S. E. and Bredt D. S. (1998) PDZ proteins organize synaptic signaling pathways. Cell 93, 495–498.PubMedCrossRefGoogle Scholar
  6. Feng J., Yan Z., Ferreira A., Tomizawa K., Liauw J. A., Zhuo M., et al. (2000) Spinophilin regulates the formation and function of dendritic spines. Proc. Natl. Acad. Sci. USA 97, 9287–9292.PubMedCrossRefGoogle Scholar
  7. Fischer M., Kaech S., Knutti D., and Matus A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854.PubMedCrossRefGoogle Scholar
  8. Fischer M., Kaech S., Wagner U., Brinkhaus H., and Matus A. (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat. Neurosci. 3, 887–894.PubMedCrossRefGoogle Scholar
  9. Garey L. J., Ong W. Y., Patel T. S., Kanani M., Davis A., Mortimer A. M., et al. (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol. Neurosurg. Psychiatry 65, 446–453.PubMedCrossRefGoogle Scholar
  10. Gomperts S. N. (1996) Clustering membrane proteins: It’s all coming together with the PSD-95/SAP90 protein family. Cell 84, 659–662.PubMedCrossRefGoogle Scholar
  11. Goslin K. and Banker G. (1991) Rat hippocampal neurons in low density culture, in Culturing Nerve Cells. MIT, Cambridge, MA, pp. 339–370.Google Scholar
  12. Gray E. G. (1959) Axosomatic and axodendritic synapses of the cerebral cortex: an electron microscopic study. J. Anat. 83, 420–433.Google Scholar
  13. Harris K. M. (1999) Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348.PubMedCrossRefGoogle Scholar
  14. Hering H. and Sheng M. (2001) Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 2, 880–888.PubMedCrossRefGoogle Scholar
  15. Hsieh-Wilson L. C., Benfenati F., Snyder G. L., Allen P. B., Nairn A. C., and Greengard P. (2002) Phosphorylation of spinophilin modulates its interaction with actin filaments. J. Biol. Chem. (Submitted.)Google Scholar
  16. Hsieh-Wilson L. C., Allen P. B., Watanabe T., Nairn A. C., and Greengard P. (1999) Characterization of the neuronal targeting protein spinophilin and its interactions with protein phosphatase-1. Biochemistry 38, 4365–4373.PubMedCrossRefGoogle Scholar
  17. Lupas A. (1996) Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382.PubMedCrossRefGoogle Scholar
  18. Matus A. (2000) Actin-based plasticity in dendritic spines. Science 290, 754–758.PubMedCrossRefGoogle Scholar
  19. Morishita W., Connor J. H., Xia H., Quinlan E. M., Shenolikar S., and Malenka R. C. (2001) Regulation of synaptic strength by protein phosphatase 1. Neuron 32, 1133–1148.PubMedCrossRefGoogle Scholar
  20. Nakanishi H., Obaishi H., Satoh A., Wada M., Mandai K., Satoh K., et al. (1997) Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J. Cell Biol. 139, 951–961.PubMedCrossRefGoogle Scholar
  21. Park J. S., Bateman M. C., and Goldberg M. P. (1996) Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol. Dis. 3, 215–227.PubMedCrossRefGoogle Scholar
  22. Richman J. G., Brady A. E., Wang Q., Hensel J. L., Colbran R. J., and Limbird L. E. (2001) Agonist-regulated Interaction between alpha2-adrenergic receptors and spinophilin. J. Biol. Chem. 276, 15,003–15,008.CrossRefGoogle Scholar
  23. Satoh A., Nakanishi H., Obaishi H., Wada M., Takahashi K., Satoh K., et al. (1998) Neurabin-II/spinophilin. An actin filament-binding protein with one pdz domain localized at cadherin-based cell-cell adhesion sites. J. Biol. Chem. 273, 3470–3475.PubMedCrossRefGoogle Scholar
  24. Schell M. J., Erneux C., and Irvine R. F. (2001) Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J. Biol. Chem. 276, 37,537–37,546.CrossRefGoogle Scholar
  25. Sheng M. and Wyszynski M. (1997) Ion channel targeting in neurons. Bioessays 19, 847–853.PubMedCrossRefGoogle Scholar
  26. Smith F. D., Oxford G. S., and Milgram S. L. (1999) Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J. Biol. Chem. 274, 19,894–19,900.Google Scholar
  27. Vivo M., Calogero R. A., Sansone F., Calabro V., Parisi T., Borrelli L., et al. (2001) The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. J. Biol. Chem. 276, 14,161–14,169.Google Scholar
  28. Weitzdoerfer R., Dierssen M., Fountoulakis M., and Lubec G. (2001) Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J. Neural. Transm. Suppl. 61, 59–70.PubMedGoogle Scholar
  29. Wisniewski K. E., Segan S. M., Miezejeski C. M., Sersen E. A., and Rudelli R. D. (1991) The Fra(X) syndrome: neurological, electrophysiological, and neuropathological abnormalities. Am. J. Med. Genet. 38, 476–480.PubMedCrossRefGoogle Scholar
  30. Yamada M., Kakita A., Mizuguchi M., Rhee S. G., Kim S. U., and Ikuta F. (1993) Specific expression of inositol 1,4,5-trisphosphate 3-kinase in dendritic spines. Brain Res. 606, 335–340.PubMedCrossRefGoogle Scholar
  31. Yan Z., Hsieh-Wilson L., Feng J., Tomizawa K., Allen P. B., Fienberg A. A., et al. (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat. Neurosci. 2, 13–17.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Stacie D. Grossman
    • 1
  • Linda C. Hsieh-Wilson
    • 1
    • 2
  • Patrick B. Allen
    • 1
  • Angus C. Nairn
    • 1
    • 3
  • Paul Greengard
    • 1
  1. 1.Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew York
  2. 2.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadena
  3. 3.Department of PsychiatryYale University School of MedicineNew Haven

Personalised recommendations