NeuroMolecular Medicine

, Volume 1, Issue 1, pp 69–79 | Cite as

Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3

Implications for synaptic plasticity and excitotoxic neuronal death
  • Chengbiao Lu
  • Weiming Fu
  • Guy S. Salvesen
  • Mark P. Mattson
Original Research

Abstract

Cysteine proteases of the caspase family play central roles in excecuting the cell death process in neurons during development of the nervous system and in neurodegenerative disorders. Recent findings suggest that caspases may also play roles in modulating neuronal plasticity in the absence of cell death. We previously reported that caspases can be activated in dendrites and synapses in response to activation of glutamate receptors. In the present study we demonstrate that the GluR1 subunit of the AMPA subtype of glutamate receptor is directly cleaved by caspase-3, and provide evidence that the cleavage of this subunit modulates neuronal excitability in ways that suggest important roles for caspases in regulating synaptic plasticity and cell survival. Whole-cell patch-clamp recordings in cultured rat hippocampal neurons showed that caspase activation in response to apoptotic stimuli selectively decreases AMPA channel activity without decreasing NMDA channel activity. Perfusion of neurons with recombinant caspase-3 resulted in a decreased AMPA current, demonstrating that caspase-3 activity is sufficient to suppress neuronal responses to glutamate. Exposure of radiolabeled GluR1 to recombinant caspase-3 resulted in cleavage of GluR1, demonstrating that this glutamate receptor protein is a direct substrate of this caspase. Our findings suggest roles for caspases in the modulation of neuronal excitability in physiological settings, and also identify a mechanism whereby caspases ensure that neurons die by apoptosis rather than excitotoxic necrosis in developmental and pathological settings.

Index Entries

apoptosis calcium learning and memory neurotrophic factor NMDA patch clamp staurosporine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrain C. and Martin S. J. (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. Sci. 26, 390–397.PubMedCrossRefGoogle Scholar
  2. Aksenov M. Y., Aksenova M. V., Markesbery W. R., and Butterfield D. A. (1998) Amyloid beta-peptide (1–40)-mediated oxidative stress in cultured hippocampal neurons. Protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA. J. Mol. Neurosci. 10, 181–192.PubMedGoogle Scholar
  3. Albers D. S. and Beal M. F. (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J. Neural Transm. Suppl. 59, 133–154.PubMedGoogle Scholar
  4. Alexi T., Borlongan C. V., Faull R. L., Williams C. E., Clark R. G., Gluckman P. D., and Hughes P. E. (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol. 60, 409–470.PubMedCrossRefGoogle Scholar
  5. Boonman Z. and Isacson O. (1999) Apoptosis in neuronal development and transplantation: role of caspases and trophic factors. Exp. Neurol. 156, 1–15.PubMedCrossRefGoogle Scholar
  6. Bruce A. J., Bose S., Fu W., Butt C. M., Mirault M. E., Taniguchi N., and Mattson M. P. (1997) Amyloid β-peptide alters the profile of antioxidant enzymes in hippocampal cultures in a manner similar to that observed in Alzheimer’s disease. Pathogenesis 1, 15–30.Google Scholar
  7. Budd S. L., Tenneti L., Lishnak T., and Lipton S. A. (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc. Natl. Acad. Sci. USA 97, 6161–6166.PubMedCrossRefGoogle Scholar
  8. Chan S. L. and Mattson M. P. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58, 167–190.PubMedCrossRefGoogle Scholar
  9. Chan S. L., Tammariello S. P., Estus S., and Mattson M. P. (1999) Par-4 mediates trophic factor withdrawal-induced apoptosis of hippocampal neurons: actions prior to mitochondrial dysfunction and caspase activation. J. Neurochem. 73, 502–512.PubMedCrossRefGoogle Scholar
  10. Choi D. W. (1994) Calcium and excitotoxic neuronal injury. Ann. NY Acad. Sci. 747, 162–171.PubMedCrossRefGoogle Scholar
  11. Culmsee C., Zhu Y., Krieglstein J., and Mattson M. P. (2001) Evidence for the involvement of Par-4 in ischemic neuron cell death. J. Cereb. Blood Flow Metab. 21, 334–343.PubMedCrossRefGoogle Scholar
  12. Eilers A., Whitfield J., Vekrellis K., Neame S. J., Shah B., and Ham J. (1999) c-Jun and Bax: regulators of programmed cell death in developing neurons. Biochem. Soc. Trans. 27, 790–797.PubMedGoogle Scholar
  13. Endres M., Namura S., Shimizu-Sasamata M., Waeber C., Zhang L., Gomez-Isla T., et al. (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J. Cereb. Blood Flow Metab. 18, 238–247.PubMedCrossRefGoogle Scholar
  14. Eriksson C., Tehranian R., Iverfeldt K., Winblad B., and Schultzberg M. (2000) Increased expression of mRNA encoding interleukin-1 beta and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. J. Neurosci. Res. 60, 266–279.PubMedCrossRefGoogle Scholar
  15. Furukawa K., Fu W., Li Y., Witke W., Kwiatkowski D. J., and Mattson M. P. (1997) The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178–8186.PubMedGoogle Scholar
  16. Gastman B. R., Johnson D. E., Whiteside T. L., and Rabinowich H. (1999) Caspase-mediated degradation of T-cell receptor zeta-chain. Cancer Res. 59, 1422–1427.PubMedGoogle Scholar
  17. Gillardon F., Kiprianova I., Sandkuhler J., Hossmann K. A., and Spranger M. (1999) Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia. Neuroscience 93, 1219–1222.PubMedCrossRefGoogle Scholar
  18. Glazner G. W., Chan S. L., Lu C., and Mattson M. P. (2000) Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649.PubMedGoogle Scholar
  19. Gorman A. M., Ceccatelli S., and Orrenius S. (2000) Role of mitochondria in neuronal apoptosis. Dev. Neurosci. 22, 348–358.PubMedCrossRefGoogle Scholar
  20. Guo Q., Fu W., Sopher B. L., Miller M. W., Ware C. B., Martin G. M., and Mattson M. P. (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat. Med. 5, 101–106.PubMedCrossRefGoogle Scholar
  21. Keller J. N., Hanni K. B., Mattson M. P., and Markesbery W. R. (1998) Cyclic nucleotides attenuate lipid peroxidation-mediated neuron toxicity. Neuroreport 9, 3731–3734.PubMedCrossRefGoogle Scholar
  22. Kruman I., Bruce-Keller A. J., Bredesen D., Waeg G., and Mattson M. P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100.PubMedGoogle Scholar
  23. Li Y., Powers C., Jiang N., and Chopp M. (1998) Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. J. Neurol. Sci. 156, 119–132.PubMedCrossRefGoogle Scholar
  24. Lu C. B., Fu W., and Mattson M. P. (2001) Caspase-mediated suppression of glutamate (AMPA) receptor channel activity in hippocampal neurons in response to DNA damage promotes apoptosis and prevents necrosis: implications for neurological side effects of cancer therapy and neurodegenerative disorders. Neurobol. Dis. 8, 194–206.CrossRefGoogle Scholar
  25. Martin L. J., Al-Abdulla N. A., Brambrink A. M., Kirsch J. R., Sieber F. E., and Portera-Cailliau C. (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res. Bull. 46, 281–309.PubMedCrossRefGoogle Scholar
  26. Mattson M. P., Dou P., and Kater S. B. (1988a) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8, 2087–2100.PubMedGoogle Scholar
  27. Mattson M. P., Lee R. E., Adams M. E., Guthrie P. B., and Kater S. B. (1988b) Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1, 865–876.PubMedCrossRefGoogle Scholar
  28. Mattson M. P., Murrain M., Guthrie P. B., and Kater S. B. (1989) Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. 9, 3728–3740.PubMedGoogle Scholar
  29. Mattson M. P. (1996) Calcium and free radicals: mediators of neurotrophic factor and excitatory transmitter-regulated developmental plasticity and cell death. Perspect. Dev. Neurobiol. 3, 79–91.PubMedGoogle Scholar
  30. Mattson M. P., Keller J. N., and Begley J. G. (1998) Evidence for synaptic apoptosis. Exp. Neurol. 53, 35–48.CrossRefGoogle Scholar
  31. Mattson M. P., Pedersen W. A., Duan W., Culmsee C., and Camandola S. (1999) Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann. NY Acad. Sci. 893, 154–175.PubMedCrossRefGoogle Scholar
  32. Mattson M. P. (2000) Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol. 1, 120–129.CrossRefGoogle Scholar
  33. Mattson M. P., Duan W., Chan S. L., and Camandola S. (2000) Par-4: an emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J. Mol. Neurosci. 13, 17–30.CrossRefGoogle Scholar
  34. Michaelis E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369–415.PubMedCrossRefGoogle Scholar
  35. Monti B. and Contestabile A. (2000) Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur. J. Neurosci. 12, 3117–3123.PubMedCrossRefGoogle Scholar
  36. Nicholls D. G., Budd S. L., Castilho R. F., and Ward M. W. (1999) Glutamate excitotoxicity and neuronal energy metabolism. Ann. NY Acad. Sci. 893, 1–12.PubMedCrossRefGoogle Scholar
  37. Nitecka L., Tremblay E., Charton G., Bouillot J. P., Berger M. L., and Ben-Ari Y. (1984) Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience 13, 1073–1094.PubMedCrossRefGoogle Scholar
  38. Nucci C., Piccirilli S., Rodino P., Nistico R., Grandinetti M., Cerulli L., et al. (2000) Apoptosis in the dorsal lateral geniculate nucleus after monocular deprivation involves glutamate signaling, NO production, and PARP activation. Biochem. Biophys. Res. Commun. 278, 360–367.PubMedCrossRefGoogle Scholar
  39. Oppenheim R. W. (1991) Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453–501.PubMedCrossRefGoogle Scholar
  40. Pennartz C. M., McNaughton B. L., and Mulder A. B. (2000) The glutamate hypothesis of reinforcement learning. Prog. Brain Res. 126, 231–253.PubMedCrossRefGoogle Scholar
  41. Prehn J. H., Jordan J., Ghadge G. D., Preis E., Galindo M. F., Roos R. P., et al. (1997) Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis. J. Neurochem. 68, 1679–1685.PubMedCrossRefGoogle Scholar
  42. Rabuffetti M., Sciorati C., Tarozzo G., Clementi E., Manfredi A. A., and Beltramo M. (2000) Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J. Neurosci. 20, 4398–4404.PubMedGoogle Scholar
  43. Rajan I. and Cline H. T. (1998) Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846.PubMedGoogle Scholar
  44. Rothstein J. D. (1995) Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin. Neurosci. 3, 348–359.PubMedGoogle Scholar
  45. Scaffidi C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K. J., et al. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687.PubMedCrossRefGoogle Scholar
  46. Segal M. and Andersen P. (2000) Dendritic spines shaped by synaptic activity. Curr. Opin. Neurobiol. 10, 582–586.PubMedCrossRefGoogle Scholar
  47. Shieh P. B. and Ghosh A. (1999) Molecular mechanisms underlying activity-dependent regulation of BDNF expression. J. Neurobiol. 41, 127–134.PubMedCrossRefGoogle Scholar
  48. Springer J. E., Azbill R. D., Nottingham S. A., and Kennedy S. E. (2000) Calcineurin-mediated BAD dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J. Neurosci. 20, 7246–72451.PubMedGoogle Scholar
  49. Zhou Q., Snipas S., Orth K., Muzio M., Dixit V. M., and Salvesen G. S. (1997) Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J. Biol. Chem. 272, 7797–7800.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Chengbiao Lu
    • 1
  • Weiming Fu
    • 1
  • Guy S. Salvesen
    • 2
    • 3
  • Mark P. Mattson
    • 1
    • 2
  1. 1.Laboratory of NeurosciencesNational Institute on Aging Gerontology Research CenterBaltimore
  2. 2.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimore
  3. 3.2 Burnham InstituteLa Jolla

Personalised recommendations