, Volume 5, Issue 1, pp 59–77 | Cite as

Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina

  • Luciano Da Fontoura Costa
  • Daniela Maria Oliveira Bonci
  • Cézar Akiyoshi Saito
  • Fernando Allan De Farias Rocha
  • Luiz Carlos De Lima Silveira
  • Dora Fix Ventura
Original Article


Although neuronal dynamics is to a high extent a function of synapse strength, the spatial distribution of neurons is also known to play an important role, which is evidenced by the topographical organization of the main stations of the visual system: retina, lateral geniculate nucleus, and cortex. The coexisting systems of normally placed and displaced amacrine cells in the vertebrate retina provide interesting examples of retinotopic spatial organization. However, it is not clear whether these two systems are spatially interrelated or not. The current work applies two mathematical-computational methods-a new method involving Voronoi diagrams for local density quantification and a more traditional approach, the Ripley K function-in order to characterize the mosaics of normally placed and displaced amacrine cells in the retina of Hoplias malabaricus and search for possible spatial relationships between these two types of mosaics. The results obtained by the Voronoi local density analysis suggest that the two systems of amacrine cells are spatially interrelated through nearly constant local density ratios.

Index Entries

Amacrine cells distance-based methods mosaics spatial correlation spatial order retina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboelela, S. W. and Robinson, D. W. (2004) Physiological response properties of displaced amacrine cells of the adult ferret retina. Vis. Neurosci. 21, 135–144.PubMedCrossRefGoogle Scholar
  2. Bennis, M., Versaux-Botteri, C., Reperant, J., and Armengol, J. A. (2005) Calbindin, calretinin and parvalbumin immunoreactivity in the retina of the chameleon (Chamaeleo chamaeleon). Brain Behav. Evol. 65, 177–187.PubMedCrossRefGoogle Scholar
  3. Berg, M., de van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000) Computational Geometry, 2nd ed., Springer, Berlin.Google Scholar
  4. Besag, J. (1977) Contribution to the discussion of Dr. Ripley's paper. J. R. Stat. Soc. Ser. B 39, 193–195.Google Scholar
  5. Bonci, D. M., de Lima, S. M., Grotzner, S. R., Oliveira Ribeiro, C. A., Hamassaki, D. E., and Ventura, D. F. (2006) Losses of immunoreactive parvalbumin amacrine and immunoreactive alphaprotein kinase C bipolar cells caused by methylmercury chloride intoxication in the retina of the tropical fish Hoplias malabaricus. Braz. J. Med. Biol. Res. 39, 405–410.PubMedCrossRefGoogle Scholar
  6. Casini, G., Rickman, D. W., and Brecha, N. C. (1995) AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J. Comp. Neurol. 356, 132–142.PubMedCrossRefGoogle Scholar
  7. Chiquet, C., Dkhissi-Benyahya, O., and Cooper, H. M. (2005) Calcium-binding protein distribution in the retina of strepsirhine and haplorhine primates. Brain Res. Bull. 68, 185–194.PubMedCrossRefGoogle Scholar
  8. Cook, J. E. and Chalupa, L. M. (2000) Retinal mosaics: new insights into an old concept. Trends Neurosci. 23, 26–34.PubMedCrossRefGoogle Scholar
  9. Costa, L., Da, F., and Cesar, R. M. Jr. (2001) Shape Analysis and Classification: Theory and Practice, CRC Press, Boca Raton.Google Scholar
  10. Costa, L., da, F., Rocha, F., and de Lima, S. M. A. (2006) Characterizing the polygonality of biological structures. Phys. Rev. E. 73, 011913.CrossRefGoogle Scholar
  11. Cuenca, N., Deng, P., Linberg, K. A., Lewis, G. P., Fisher, S. K., and Kolb, H. (2002) The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters. J. Neurocytol. 31, 649–666.PubMedCrossRefGoogle Scholar
  12. de Lima, S. M. A., Ahnelt, P. K., Carvalho, T. O., et al. (2005) Horizontal cells in the retina of a diurnal rodent, the agouti (Dasyprocta agouti). Vis. Neurosci. 22, 707–720.PubMedGoogle Scholar
  13. Deng, P., Cuenca, N., Doerr, T., Pow, D. V., Miller, R., and Kolb, H. (2001) Localization of neurotransmitters and calcium binding proteins to neurons of salamander and mudpuppy retinas. Vision Res. 41, 1771–1783.PubMedCrossRefGoogle Scholar
  14. Diggle, P. J. (1983) Statistical Analysis of Spatial Point Pattern, Academic, New York.Google Scholar
  15. Diggle, P. J. (1986) Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern. J. Neurosci. Methods 18, 115–125.PubMedCrossRefGoogle Scholar
  16. Edelman, G. (1990) Neural Darwinism: The Theory of Neuronal Group Selection, Oxford University Press.Google Scholar
  17. Eglen, S. J., Raven, M. A., Tamrazian, E., and Reese, B.E. (2003) Dopaminergic amacrine cells in the inner nuclear layer and ganglion cell layer comprise a single functional retinal mosaic. J. Comp. Neurol. 466, 343–355.PubMedCrossRefGoogle Scholar
  18. Euler, T., Detwiler, P. B., and Denk, W. (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852.PubMedCrossRefGoogle Scholar
  19. Gabriel, R. and Straznicky, C. (1992) Immunocytochemical localization of parvalbumin and neurofilament triplet protein immunoreactivity in the cat retina: colocalization in a subpopulation of AII amacrine cells. Brain Res. 595, 133–136.PubMedCrossRefGoogle Scholar
  20. Gabriel, R., Lesauter, J., Banvolgyi, T., Petrovics, G., Silver, R., and Witkovsky, P. (2004) AII amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell Tissue Res. 315, 181–186.PubMedCrossRefGoogle Scholar
  21. Hamano, K., Kiyama, H., Emson, P. C., Manabe, R., Nakauchi, M., and Tohyama, M. (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J. Comp. Neurol. 302, 417–424.PubMedCrossRefGoogle Scholar
  22. Liu, J. and Nowinsky, W. L. (2006) Ahybrid approach to shape-based interpolation of stereotactic atlases of the human brain. Neuroinformatics 4, 177–198.PubMedCrossRefGoogle Scholar
  23. Mack, A. F., Sussmann, C., Hirt, B., and Wagner, H. J. (2004) Displaced amacrine cells disappear from the ganglion cell layer in the central retina of adult fish during growth. Invest. Ophthalmol. Vis. Sci. 45, 3749–3755.PubMedCrossRefGoogle Scholar
  24. Marc, R. E. and Cameron, D. (2001) A molecular phenotype atlas of the zebrafish retina. J. Neurocytol. 30, 593–654.PubMedCrossRefGoogle Scholar
  25. Marc, R. E., Liu, W. L., Kalloniatis, M., Raiguel, S. F., and van Haesendonck, E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina. J. Neurosci. 10, 4006–4034.PubMedGoogle Scholar
  26. Moshiri, A., Close, J., and Reh, T. A. (2004) Retinal stem cells and regeneration. Int. J. Dev. Biol. 48, 1003–1014.PubMedCrossRefGoogle Scholar
  27. Nirenberg, S. and Meister, M. (1997) The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 18, 637–650.PubMedCrossRefGoogle Scholar
  28. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000) Spatial Tessellations, 2nd ed., Wiley, Chichester.Google Scholar
  29. Otteson, D. C. and Hitchcock, P. F. (2003) Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res. 43, 927–936.PubMedCrossRefGoogle Scholar
  30. Palanza, L., Jhaveri, S., Donati, S., Nuzzi, R., and Vercelli, A. (2005) Quantitative spatial analysis of the distribution of NADPH-diaphorasepositive neurons in the developing and mature rat retina. Brain Res. Bull. 65, 349–360.PubMedCrossRefGoogle Scholar
  31. Perron, M. and Harris, W. A. (2000) Retinal stem cells in vertebrates. Bioessays 22, 685–688.PubMedCrossRefGoogle Scholar
  32. Perry, V. H. and Walker, M. (1980) Amacrine cells, displaced amacrine cells and interplexiform cells in the retina of the rat. Proc. R Soc. Lond. B Biol. Sci. 208, 415–431.PubMedCrossRefGoogle Scholar
  33. Ramella, M., Boschim, W., Fadda, D., and Nonino, M. (2001) Finding galaxy clusters using Voronoi tessellations. Astron. Astroph. 368, 776–786.CrossRefGoogle Scholar
  34. Ramóny Cajal, S. (1893) Lá Retine dês Vertebrés. La Cellule, 217–257.Google Scholar
  35. Ripley, B. D. (1976) The second-order analysis of stationary point processes. J. Appl. Probab. 13, 255–266.CrossRefGoogle Scholar
  36. Sanna, P. P., Keyser, K. T., Battenberg, E., and Bloom, F. E. (1990) Parvalbumin immunoreactivity in the rat retina. Neurosci. Lett. 118, 136–139.PubMedCrossRefGoogle Scholar
  37. Sanna, P. P., Keyser, K. T., Celio, M. R., Karten, H. J., and Bloom, F. E. (1993) Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Res. 600, 141–150.PubMedCrossRefGoogle Scholar
  38. Shaap, W. and Weygaert, R. (2000) Continuous field and discrete samples: reconstruction through Delaunay tessellations. Astron. Astrophys. 363, L29.Google Scholar
  39. Silveira, L. C. L., Yamada, E. S., and Picanço-Diniz, C. W. (1989) Displaced horizontal and biplexiform horizontal cells in the mammalian retina. Vis. Neurosci. 3, 483–488.PubMedGoogle Scholar
  40. van Haesendonck, E. and Missotten, L. (1987) Displaced small amacrine cells in the retina of the marine teleost Callionymus lyra L. Vision Res. 27, 1431–1443.PubMedCrossRefGoogle Scholar
  41. Wässle, H., Chun, M. H., and Muller, F. (1987) Amacrine cells in the ganglion cell layer of the cat retina. J. Comp. Neurol. 265, 391–408.PubMedCrossRefGoogle Scholar
  42. Wässle, H., Grünert, U., and Rohrenbeck, J. (1993) Immunocytochemical staining of AIIamacrine cells in the rat retina with antibodies against parvalbumin. J. Comp. Neurol. 332, 407–420.PubMedCrossRefGoogle Scholar
  43. Wässle, H., Dacey, D. M., Haun, T., Haverkamp, S., Grünert, U., and Boycott, B. B. (2000) The mosaic of horizontal cells in the macaque monkey retina: with a comment on biplexiform ganglion cells. Vis. Neurosci. 17, 591–608.PubMedCrossRefGoogle Scholar
  44. Weruaga, E., Velasco, A., Brinon, J. G., Arevalo, R., Aijon, J., and Alonso, J. R. (2000) Distribution of the calcium-binding proteins parvalbumin, calbindin D-28k and calretinin in the retina of two teleosts. J. Chem. Neuroanat. 19, 1–15.PubMedCrossRefGoogle Scholar
  45. Yan, X. X. (1997) Prenatal development of calbindin D-28K and parvalbumin immunoreactivities in the human retina. J. Comp. Neurol. 377, 565–576.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Luciano Da Fontoura Costa
    • 1
  • Daniela Maria Oliveira Bonci
    • 2
    • 3
  • Cézar Akiyoshi Saito
    • 4
  • Fernando Allan De Farias Rocha
    • 2
    • 4
  • Luiz Carlos De Lima Silveira
    • 4
    • 5
  • Dora Fix Ventura
    • 2
    • 3
  1. 1.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Instituto de PsicologiaUniversidade de São PauloSão PauloBrazil
  3. 3.Núcleo de Neurociências e ComportamentoUniversidade de São PauloSão PauloBrazil
  4. 4.Departamento de FisiologiaUniversidade Federal do ParáBelémBrazil
  5. 5.Núcleo de Medicina TropicalUniversidade Federal do ParáBelémBrazil

Personalised recommendations