, Volume 5, Issue 1, pp 11–33 | Cite as

The extensible neuroimaging archive toolkit

An informatics platform for managing, exploring, and sharing neuroimaging data
  • Daniel S. MarcusEmail author
  • Timothy R. Olsen
  • Mohana Ramaratnam
  • Randy L. Buckner
Original Article


The Extensible Neuroimaging Archive Toolkit (XNAT) is a software platform designed to facilitate common management and productivity tasks for neuroimaging and associated data. In particular, XNAT enables qualitycontrol procedures and provides secure access to and storage of data. XNAT follows a threetiered architecture that includes a data archive, user interface, and middleware engine. Data can be entered into the archive as XML or through data entry forms. Newly added data are stored in a virtual quarantine until an authorized user has validated it. XNAT subsequently maintains a history profile to track all changes made to the managed data. User access to the archive is provided by a secure web application. The web application provides a number of quality control and productivity features, including data entry forms, data-type-specific searches, searches that combine across data types, detailed reports, and listings of experimental data, upload/download tools, access to standard laboratory workflows, and administration and security tools. XNAT also includes an online image viewer that supports a number of common neuroimaging formats, including DICOM and Analyze. The viewer can be extended to support additional formats and to generate custom displays. By managing data with XNAT, laboratories are prepared to better maintain the long-term integrity of their data, to explore emergent relations across data types, and to share their data with the broader neuroimaging community.

Index Entries

Data sharing database genetics informatics metadata neuroinformatics open source quality control workflow XML schema 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarsten, A., Brugali, D., and Menga, G. (1996) Patterns for three-tier client/server applications. In Pattern Languages of Programs (PloP), Monticello, IL.Google Scholar
  2. Amer-Yahia, S., Du, F., and Freire, J. (2004) A comprehensive solution to the XML-to-relational mapping problem. WIDM 4, 31–38.Google Scholar
  3. Arenas, M. and Libkin, L. (2004) A normal form for XML documents. ACM Trans Database Syst. 29, 195–232.CrossRefGoogle Scholar
  4. Baru, C., Moore, R., Rajasekar, A., and Wan, M. (1998) The SDS Storage Resource Broker. Proceedings of CASCON'98 Conference, Toronto, Canada.Google Scholar
  5. Buckner, R. L., Head, D., Parker, J., et al. (2004) A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23, 724–738.PubMedCrossRefGoogle Scholar
  6. Bui, A. A., Weinger, G. S., Barretta, S. J., Dionisio, J. D., and Kangarloo, H. (2002) An XML gateway to patient data for medical research applications. Ann. NY Acad. Sci. 980, 236–246.PubMedCrossRefGoogle Scholar
  7. Burns, J. M., Church, J. A., Johnson, D. K., et al. (2005) White matter lesions are prevalent but differentially related with cognition in aging and early Alzheimer Disease. Arch. Neurol. 62, 1870–1876.PubMedCrossRefGoogle Scholar
  8. Carminati, B. and Ferrari, E. (2005) AC-XML Documents: Improving the performance of a web access control module. Proceedings of the tenth ACM Symposium on Access Control Models and Technologies, Stockholm, Sweden, pp. 67–76.Google Scholar
  9. Chaudhuri, S., Chen, Z., Shim, K., and Wu, Y. (2005) Storing XML (with XSD) in SQL databases: Interplay of logical and physical designs. IEEE Trans. Knowledge Data Eng. 17, 1595–1609.CrossRefGoogle Scholar
  10. Dolin, R. H., Alschuler, L., Beebe, C., et al. (2001) The HL7 Clinical Document Architecture. J. Am. Med. Inform. Assoc. 8, 552–569.PubMedGoogle Scholar
  11. Du, F., Amer-Yahia, S., and Freire, J. (2004) ShreX: Managing XML documents in relational databases. Proceedings of the 30th VLDB Conference, Toronto, Canada, pp. 1297–1300.Google Scholar
  12. Fagan, A. M., Younkin, L. H., Morris, J. C., et al. (2000) Differences in the Abeta40/Abeta42 ratio associated with cerebrospinal fluid lipoproteins as a function of apolipoprotein E genotype. Ann. Neurol. 48, 201–210.PubMedCrossRefGoogle Scholar
  13. Fernandez, M., Kadiyska, Y., Suciu, D., Morishima, A., Tan, W. (2002) SilkRoute: A framework for publishing relational data in XML. ACM Trans. Database Syst. 27, 438–493.CrossRefGoogle Scholar
  14. Fischl, B., Salat, D. H., van der Kouwe, A. J., et al. (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69-S84.PubMedCrossRefGoogle Scholar
  15. Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., and Buckner, R. L. (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64, 1032–1039.PubMedGoogle Scholar
  16. Gardner, D., Toga, A. W., and Ascoli, G. A. (2003) Towards effective and rewarding data sharing. Neuroinformatics 1(3), 289–295.PubMedCrossRefGoogle Scholar
  17. Hartmann, S. and Link, S. (2003) More Functional Dependencies for XML. Lect. Notes Comput. Sci. 2798, 355–369.CrossRefGoogle Scholar
  18. Hastings, S., Oster, S., Langella, S., et al. (2005) A grid-based image archival and analysis system. J. Am. Med. Inform. Assoc. 12, 286–295.PubMedCrossRefGoogle Scholar
  19. Ilioudis, C., Pangalos, G., and Vakali, A. (2001) Security model for XML data. Proceedings of the International Conference on Internet Computing, Las Vegas, NV, pp. 400–406.Google Scholar
  20. Keator, D. B., Gadde, S., Grethe, J. S., Taylor, D. V., and Potkin, S. G., FIRST BIRN. (2006) A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels. Neuroinformatics 2, 199–212.CrossRefGoogle Scholar
  21. Krishnamurthy, R., Kaushik, R., and Naughton, J. F. (2003) XML-to-SQLQuery Translation Literature: The State of the Art and Open Problems. Proceedings of the 1st International XMLDatabase Symposium, Berlin, Germany, pp. 1–18.Google Scholar
  22. Lee, M., Ling, T., and Low, W. (2002) Designing functional dependencies for XML, in EDBT 2002, Lecture Notes in Computer Science 2287, pp. 124–141.Google Scholar
  23. Leuf, B. and Cunningham, W. (2001) The Wiki Way: Quick Collaboration on the Web. Addison-Wesley, Boston, MA.Google Scholar
  24. Marenco, L., Tosches, T., Crasto, C., Shepherd, G., Miller, P. L., and Nadkarni, P. M. (2003) Achieving evolvable web-database bioscience applications using the EAV/CR framework: recent advances. J. Am. Med. Inform. Assoc. 10, 444–453.PubMedCrossRefGoogle Scholar
  25. Martone, M. E., Gupta, A., and Ellisman, M. H. (2004) E-neuroscience: challenges and triumphs in integrating distributed data from molecules to brains. Nat. Neurosci. 7, 467–472.PubMedCrossRefGoogle Scholar
  26. Morris, J. C. (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412b-2414b.Google Scholar
  27. Nadkarni, P. M., Marenco, L., Chen, R., Skoufos, E., Shephard, G., and Miller, P. (1999) Organization of heterogeneous scientific data using the EAV/CR representation. J. Am. Med. Inform. Assoc. 6, 478–493.PubMedGoogle Scholar
  28. Nielsen, J. (2000) Designing Web Usability: The Practice of Simplicity. New Riders Publishing, Indianapolis.Google Scholar
  29. Noy, N. F., Crubezy, M., Fergerson, R. W., et al. (2003) Protege-2000: an open-source ontology-development and knowledge-acquisition environment. AMIAAnnu. Symp. Proc. 953.Google Scholar
  30. Ozyurt, B. I., Wei, D., Keator, D. B., Potkin, S. G., Brown, G. G., and Grethe, J. S., (2004) Webaccessible clinical data management within an extensible neuroimaging database. Program Number 921.10. 2005 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Washington, DC, 2005 Online.Google Scholar
  31. Rubin, E. H., Storandt, M., Miller, J. P., et al. (1998) A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch. Neurol. 55, 395–401.PubMedCrossRefGoogle Scholar
  32. Scheltens, P., Barkhof, F., Leys, D., et al. (1993) A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J. Neurol. Sci. 114, 7–12.PubMedCrossRefGoogle Scholar
  33. Shanmugasundaram, J., Gang, H., Tufte, K., Zhang, C., DeWitt, D. J., and Naughton, J. (1999) Relational databases for querying XML documents: limitations and opportunities. Proceedings of VLDB, Edinburgh, Scotland, pp. 302–314.Google Scholar
  34. Toga, A. W. (2002) Neuroimage databases: the good, the bad and the ugly. Nat. Rev. Neurosci. 3, 302–309.PubMedCrossRefGoogle Scholar
  35. Van Horn, J. D., Grafton, S. T., Rockmore, D., and Gazzaniga, M. S. (2004) Sharing neuroimaging studies of human cognition. Nat. Neurosci. 7, 473.PubMedCrossRefGoogle Scholar
  36. Varlamis, I. and Vazirgiannis, M. (2001) Bridging XML-schema and relational databases: a system for generating and manipulating relational databases using valid XML documents. Proceedings of ACM Symposium on Document Engineering Atlanta, GA, pp. 105–114.Google Scholar
  37. Wang, L., Riethoven, J. J., and Robinson, A. (2002) XEMBL: distributing EMBL data in XML format. Bioinformatics 18, 1147–1148.PubMedCrossRefGoogle Scholar
  38. Westbrook, J., Ito, N., Nakamura, H., Henrick, K., and Berman, H. M. (2005) PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics 21, 988–992.PubMedCrossRefGoogle Scholar
  39. Zhao, L., Lee, C. P., and Hu, J. (2005) Generating XML schemas for DICOM structured reporting templates. J. Am. Med. Inform. Assoc. 12, 72–83.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Daniel S. Marcus
    • 1
    Email author
  • Timothy R. Olsen
    • 1
  • Mohana Ramaratnam
    • 1
  • Randy L. Buckner
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of RadiologyWashington University School of MedicineSt. Louis
  2. 2.Department of Psychology, Center for Brain ScienceHarvard UniversityCambridge
  3. 3.Department of RadiologyHarvard Medical SchoolBoston
  4. 4.Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestown
  5. 5.Howard Hughes Medical InstituteUSA

Personalised recommendations