, Volume 4, Issue 1, pp 119–128 | Cite as

Dynamic phenotypes

Time series analysis techniques for characterizing neuronal and behavioral dynamics
  • Hemant Bokil
  • Ofer Tchernichovsky
  • Partha P. Mitra


We consider quantitative measures of behavioral and neuronal dynamics as a means of characterizing phenotypes. Such measures are important from a scientific perspective; because understanding brain function is contingent on understanding the link between the dynamics of the nervous system and behavioral dynamics. They are also important from a biomedical perspective because they provide a contrast to purely psychological characterizations of phenotype or characterizations via static brain images or maps, and are a potential means for differential diagnoses of neuropsychiatric illnesses. After a brief presentation of background work and some current advances, we suggest that more attention needs to be paid to dynamic characterizations of phenotypes. We will discuss some of the relevant time series analysis tools.

Index Entries

Time series analysis spectral estimation statistics songbird Parkinson's disease electrophysiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W. R., Walter, D. O., and Hendrix, C. E. (1961) Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. Exp. Neurol. 3, 501–524.CrossRefGoogle Scholar
  2. Babiloni, C., Miniussi, C., Moretti, D. V., et al. (2004) Cortical networks generating movement-related EEG rhythms in Alzheimer's disease: an EEG coherence study. Behav. Neurosci. 118, 698–706.CrossRefGoogle Scholar
  3. Beer, C. G. (1980) Perspectives on animal behavior comparisons. In: Comparative Methods in Psychology, Bornstein, M. H. (ed.) L. Erlbaum Associates, Hillsdale, NJ.Google Scholar
  4. Brazier, M. A. and Casby, J. U. (1952) Cross-correlation and autocorrelation studies of electroencephalographic potentials. Electroencephalogr. Clin. Neurophysiol. Suppl. 4, 201–211.CrossRefGoogle Scholar
  5. Brown, E. N., Kass, R. E., and Mitra, P. P. (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–461.CrossRefGoogle Scholar
  6. Coutin-Churchman, P., Anez, Y., Uzcategui, M., et al. (2003) Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clin. Neurophysiol. 114, 2294–2306.CrossRefGoogle Scholar
  7. Drai, D. and Golani, I. (2001) SEE: a tool for the visualization and analysis of rodent exploratory behavior. Neurosci. Biobehav. Rev. 25, 409–426.CrossRefGoogle Scholar
  8. Fries, P., Schroder, J. H., Roelfsema, P. R., Singer, W., and Engel, A. K. (2002) Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22, 3739–3754.Google Scholar
  9. Gallistel, C. R. (1980) The Organization of Action: A New Synthesis. L. Erlbaum Associates, Distributed by Halsted Press, Hillsdale, NJ, New York.Google Scholar
  10. Golani, I., Kafkafi, N., and Drai, D. (1999) Phenotyping stereotypic behaviour: collective variables, range of variation and predictability. Appl. Anim. Behav. Sci. 65, 191–220.CrossRefGoogle Scholar
  11. Jarvis, M. R. and Mitra, P. P. (2001) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput. 13, 717–749.CrossRefGoogle Scholar
  12. Jones, K. A., Porjesz, B., Almasy, L., et al. (2004) Linkage and linkage disequilibrium of evoked EEG oscillations with CHRM2 receptor gene polymorphisms: implications for human brain dynamics and cognition. Int. J. Psychophysiol. 53, 75–90.CrossRefGoogle Scholar
  13. Llinas, R. R., Ribary, U., Jeanmonod, D., Kronberg, E., and Mitra, P. P. (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 96, 15,222–15,227.CrossRefGoogle Scholar
  14. Percival, D. B. and Walden, A. T. (1993) Spectral Analysis For Physical Applications: Multitaper and Conventional Univeriate Techniques. Cambridge University Press. Cambridge; New York, NY.Google Scholar
  15. Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., and Andersen, R. A. (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811.CrossRefGoogle Scholar
  16. Porjesz, B., Almasy, L., Edenberg, H. J., et al. (2002) Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc. Natl. Acad. Sci. USA 99, 3729–3733.CrossRefGoogle Scholar
  17. Skinner, B. F. (1991) The Behavior of Organisms: An Experimental Analysis. Copley Pub. Group, Acton, MA.Google Scholar
  18. Tchernichovski, O., Mitra, P. P., Lints, T., and Nottebohm, F. (2001) Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569.CrossRefGoogle Scholar
  19. Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B., and Mitra, P. P. (2000) A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176.CrossRefGoogle Scholar
  20. Thakor, N. V. and Tong, S. (2004) Advances in quantitative electroencephalogram analysis methods. Ann. Rev. Biomed. Eng. 6, 453.CrossRefGoogle Scholar
  21. Thomson, D. J. (1982) Spectrum Estimation and Harmonic-Analysis. Proc. IEEE 70, 1055–1096.CrossRefGoogle Scholar
  22. Thomson, D. J. and Chave, A. D. (1991) Jackknifed Error Estimates for Spectra, Coherences, and Transfer Functions. In: Advances in Spectrum Estimation. Haykin, S. (ed.) Prentice-Hall, Englewood Cliffs, NJ, pp. 58–113.Google Scholar
  23. Tinbergen, N. (1989) The Study of Instinct. Oxford University Press, Oxford.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Hemant Bokil
    • 1
  • Ofer Tchernichovsky
    • 2
  • Partha P. Mitra
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring Harbor
  2. 2.The City College of New YorkNew York

Personalised recommendations