, Volume 3, Issue 2, pp 133–162 | Cite as

Development of a model for microphysiological simulations

Small nodes of ranvier from peripheral nerves of mice reconstructed by electron tomography
  • Gina E. SosinskyEmail author
  • Thomas J. Deerinck
  • Rocco Greco
  • Casey H. Buitenhuys
  • Thomas M. Bartol
  • Mark H. EllismanEmail author
Original Article


The node of Ranvier is a complex structure found along myelinated nerves of vertebrate animals. Specific membrane, cytoskeletal, junctional, extracellular matrix proteins and organelles interact to maintain and regulate associated ion movements between spaces in the nodal complex, potentially influencing response variation during repetitive activations or metabolic stress. Understanding and building high resolution three dimensional (3D) structures of the node of Ranvier, including localization of specific macromolecules, is crucial to a better understanding of the relationship between its structure and function and the macromolecular basis for impaired conduction in disease. Using serial section electron tomographic methods, we have constructed accurate 3D models of the nodal complex from mouse spinal roots with resolution better than 7.5nm. These reconstructed volumes contain 75–80% of the thickness of the nodal region. We also directly imaged the glial axonal junctions that serve to anchor the terminal loops of the myelin lamellae to the axolemma. We created a model of an intact node of Ranvier by truncating the volume at its mid-point in Z, duplicating the remaining volume and then merging the new half volume with mirror symmetry about the Z-axis. We added to this model the distribution and number of Na+ channels on this reconstruction using tools associated with the MCell simulation program environment. The model created provides accurate structural descriptions of the membrane compartments, external spaces, and formed structures enabling more realistic simulations of the role of the node in modulation of impulse propagation than have been conducted on myelinated nerve previously.

Index Entries

Myelinated axons peripheral nerve structure saltatory conduction ionic transmission three-dimensional reconstruction electron microscopy cell-cell junctions, axonal-glial interactions high pressure freezing 



peripheral nervous system


central nervous system


high pressure freezing


electron microscopic tomography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, W.S., J.A. Miller, M.H. Ellisman, R.L. Rosenberg, S.A. Tomiko, and S.R. Levinson. (1983) The voltage-regulated sodium channel from the electroplax of Electrophorus electricus. Cold Spring Harb Symp Quant Biol. 48 Pt 1:165–79.PubMedGoogle Scholar
  2. Altevogt, B.M., K.A. Kleopa, F.R. Postma, S.S. Scherer, and D.L. Paul (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci. 22:6458–70.PubMedGoogle Scholar
  3. Alvarez-Leefmans, F.J., M. Leon-Olea, J. Mendoza-Sotelo, F.J. Alvarez, B. Anton, and R. Garduno. (2001) Immunolocalization of the Na(+)-K(+)-2Cl(−) cotransporter in peripheral nervous tissue of vertebrates. Neuroscience. 104:569–82.PubMedCrossRefGoogle Scholar
  4. Ariyasu, R.G., J.A. Nichol, and M.H. Ellisman. (1985) Localization of sodium/potassium adenosine triphosphatase in multiple cell types of the murine nervous system with antibodies raised against the enzyme from kidney. J Neurosci. 5:2581–96.PubMedGoogle Scholar
  5. Balda, M.S., and K. Matter. (2000) The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. Embo J. 19:2024–33.PubMedCrossRefGoogle Scholar
  6. Barres, B.A. (1991) New roles for glia. J Neurosci. 11:3685–94.PubMedGoogle Scholar
  7. Bartol, T.M., Jr., B.R. Land, E.E. Salpeter, and M.M. Salpeter. (1991) Monte Carlo simulation of miniature end plate current generation in the vertebrate neuromuscular junction. Biophys J. 59:1290–307.PubMedGoogle Scholar
  8. Bergoffen, J., S.S. Scherer, S. Wang, M. Oronzi Scott, L.J. Bone, D.L. Paul, K. Chen, M.W. Lensch, P.F. Chance, and K.H. Fischbeck. (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science. 262:2039–2042.PubMedCrossRefGoogle Scholar
  9. Berthold, C.H. (1996) Development of nodes of Ranvier in feline nerves: an ultrastructural presentation. Microsc Res Tech. 34:399–421.PubMedCrossRefGoogle Scholar
  10. Berthold, C.H., I. Nilsson, and M. Rydmark. (1983) Axon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing cat. J Anat. 136 (Pt 3):483–508.PubMedGoogle Scholar
  11. Berthold, C.H., and S. Skoglund. (1968) Postnatal development of feline paranodal myelin-sheath segments. II. Electron microscopy. Acta Soc. Med. Ups. 73:127–144.PubMedGoogle Scholar
  12. Bhat, M.A., J.C. Rios, Y. Lu, G.P. Garcia-Fresco, W. Ching, M. St Martin, J. Li, S. Einheber, M. Chesler, J. Rosenbluth, J.L. Salzer, and H.J. Bellen. (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron. 30:369–83.PubMedCrossRefGoogle Scholar
  13. Black, J.A., R.E. Foster, and S.G. Waxman. (1982) Rat optic nerve: freeze-fracture studies during development of myelinated axons. Brain Res. 250:1–20.PubMedCrossRefGoogle Scholar
  14. Boyle, M.E., E.O. Berglund, K.K. Murai, L. Weber, E. Peles, and B. Ranscht. (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron. 30:385–97.PubMedCrossRefGoogle Scholar
  15. Carley, L.R., and S.A. Raymond. (1987) Comparison of the after-effects of impulse conduction on threshold at nodes of Ranvier along single frog sciatic axons. J Physiol. 386:503–27.PubMedGoogle Scholar
  16. Chiu, S.Y. (1991) Functions and distribution of voltage-gated sodium and potassium channels in mammalian Schwann cells. Glia. 4:541–58.PubMedCrossRefGoogle Scholar
  17. Dahl, R., and L.A. Staehelin. (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J Electron Microsc Tech. 13:165–74.PubMedCrossRefGoogle Scholar
  18. Dupree, J.L., J.A. Girault, and B. Popko. (1999) Axoglial interactions regulate the localization of axonal paranodal proteins. J Cell Biol. 147:1145–52.PubMedCrossRefGoogle Scholar
  19. Ellisman, M.H. (1979) Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. J Neurocytol. 8:719–35.PubMedCrossRefGoogle Scholar
  20. Ellisman, M.H., W.S. Agnew, J.A. Miller, and S.R. Levinson. (1982) Electron microscopic visualization of the tetrodotoxin-binding protein from Electrophorus electricus. Proc Natl Acad Sci U S A. 79:4461–5.PubMedCrossRefGoogle Scholar
  21. Ellisman, M.H., and S.R. Levinson. (1982) Immunocytochemical localization of sodium channel distributions in the excitable membranes of Electrophorus electricus. Proc Natl Acad Sci U S A. 79:6707–11.PubMedCrossRefGoogle Scholar
  22. Ellisman, M.H., D.E. Palmer, and M.P. Andre. (1987) Diagnostic levels of ultrasound may disrupt myelination. Exp Neurol. 98:78–92.PubMedCrossRefGoogle Scholar
  23. Ellisman, M.H., and K.R. Porter. (1980) Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 87:464–79.PubMedCrossRefGoogle Scholar
  24. Ellisman, M.H., C.A. Wiley, J.D. Lindsey, and C.C. Wurtz. (1984) Structure and function of the cytoskeleton and endomembrane systems at the node of Ranvier. In The Node of Ranvier. J. Zagroen and S. Federoff, editors. Academic Press, New York. 153–181.Google Scholar
  25. Endres, W., P. Grafe, H. Bostock, and G. ten Bruggencate. (1986) Changes in extracellular pH during electrical stimulation of isolated rat vagus nerve. Neurosci Lett. 64:201–5.PubMedCrossRefGoogle Scholar
  26. Esquenazi, E., J.S. Coggan, T.M. Bartol, R.D. Shoop, T.J. Sejnowski, M.H. Ellisman, and D.K. Berg. (2001) Computer simulation of synaptic ultrastructure and microphysiology in the chick ciliary ganglion. Society for Neuroscience Abstract.Google Scholar
  27. Fan, G.Y., S.J. Young, T. Deerinck, and M.H. Ellisman. (1996) A new electron-optical mode for high contrast imaging and online stereo observation in TEM. Journal of the Microscopy Society of America. 2:137–146.Google Scholar
  28. Fannon, A.M., D.L. Sherman, G. Ilyina-Gragerova, P.J. Brophy, V.L. Friedrich, Jr., and D.R. Colman. (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol. 129:189–202.PubMedCrossRefGoogle Scholar
  29. Fawcett, J.W., and R.J. Keynes. (1990) Peripheral nerve regeneration. Annu Rev Neurosci. 13:43–60.PubMedCrossRefGoogle Scholar
  30. Frank, J. (1989) Image analysis of single macromolecules. Electr.Microsc.Rev. 2:53–74.CrossRefGoogle Scholar
  31. Franks, K.M., T.M. Bartol, Jr., and T.J. Sejnowski. (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J. 83:2333–48.PubMedGoogle Scholar
  32. Gatto, C.L., B.J. Walker, and S. Lambert. (2003) Local ERM activation and dynamic growth cones at Schwann cell tips implicated in efficient formation of nodes of Ranvier. J Cell Biol. 162:489–98.PubMedCrossRefGoogle Scholar
  33. Gillespie, C.S., D.L. Sherman, G.E. Blair, and P.J. Brophy. (1994) Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron. 12:497–508.PubMedCrossRefGoogle Scholar
  34. Girault, J.A., and E. Peles. (2002) Development of nodes of Ranvier. Curr Opin Neurobiol. 12:476–85.PubMedCrossRefGoogle Scholar
  35. Griffin, J.W., C.Y. Li, C. Macko, T.W. Ho, S.T. Hsieh, P. Xue, F.A. Wang, D.R. Cornblath, G.M. McKhann, and A.K. Asbury. (1996) Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain-Barre syndrome. J Neurocytol. 25:33–51.PubMedCrossRefGoogle Scholar
  36. Halter, J.A., and J.W. Clark, Jr. (1993) The influence of nodal constriction on conduction velocity in myelinated nerve fibers. Neuroreport. 4:89–92.PubMedCrossRefGoogle Scholar
  37. Harlow, M.L., D. Ress, A. Stoschek, R.M. Marshall, and U.J. McMahan. (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature. 409:479–84.PubMedCrossRefGoogle Scholar
  38. Hille, B. (1992) Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA.Google Scholar
  39. Hines, M.L., and N.T. Carnevale. (2001) NEURON: a tool for neuroscientists. Neuroscientist. 7:123–35.PubMedCrossRefGoogle Scholar
  40. Ichimura, T., and M.H. Ellisman. (1991) Three-dimensional fine structure of cytoskeletal-membrane interactions at nodes of Ranvier. J Neurocytol. 20:667–81.PubMedCrossRefGoogle Scholar
  41. Ionasescu, V.V. (1995) Charcot-Marie-Tooth neuropathies: From clinical description to molecular genetics. Muscle and Nerve. 18:267–275.PubMedCrossRefGoogle Scholar
  42. Kazarinova-Noyes, K., J.D. Malhotra, D.P. McEwen, L.N. Mattei, E.O. Berglund, B. Ranscht, S.R. Levinson, M. Schachner, P. Shrager, L.L. Isom, and Z.C. Xiao. (2001) Contactin associates with Na+ channels and increases their functional expression. J Neurosci. 21:7517–25.PubMedGoogle Scholar
  43. Kirkpatrick, C., and M. Peifer. (1995) Not just glue: cell-cell junctions as cellular signaling centers. Curr Opin Genet Dev. 5:56–65.PubMedCrossRefGoogle Scholar
  44. Kremer, J.R., D.N. Mastronarde, and J.R. McIntosh. (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 116:71–6.PubMedCrossRefGoogle Scholar
  45. Kristol, C., C. Sandri, and K. Akert. (1978) Intramembranous particles at the nodes of Ranvier of the cat spinal cord: a morphometric study. Brain Res. 142:391–400.PubMedCrossRefGoogle Scholar
  46. Ladinsky, M.S., J.R. Kremer, R.S. Furcinitti, J.R. McIntosh, and K.E. Howell. (1994) HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J. Cell Biol. 127:29–38.PubMedCrossRefGoogle Scholar
  47. Lambert, S., J.Q. Davis, and V. Bennett. (1997) Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci. 17:7025–36.PubMedGoogle Scholar
  48. Lenzi, D., J.W. Runyeon, J. Crum, M.H. Ellisman, and W.M. Roberts. (1999) Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci. 19:119–32.PubMedGoogle Scholar
  49. Lev-Ram, V., and M.H. Ellisman. (1995) Axonal activation-induced calcium transients in myelinating Schwann cells, sources, and mechanisms. J Neurosci. 15:2628–37.PubMedGoogle Scholar
  50. Lev-Ram, V., and A. Grinvald. (1986) Ca2+- and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. Proc Natl Acad Sci U S A. 83:6651–5.PubMedCrossRefGoogle Scholar
  51. Lev-Ram, V., and A. Grinvald. (1987) Activity-dependent calcium transients in central nervous system myelinated axons revealed by the calcium indicator Fura-2. Biophys. J. 52:571–6.PubMedGoogle Scholar
  52. Livingston, R.B., K. Pfenniger, H. Moor, and K. Akert. (1973) Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: a freeze-etching study. Brain Res. 58:1–24.PubMedCrossRefGoogle Scholar
  53. Mannella, C.A., M. Marko, P. Penczek, D. Barnard, and J. Frank. (1994) The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc Res Tech. 27:278–83.PubMedCrossRefGoogle Scholar
  54. Marsh, B.J., D.N. Mastronarde, K.F. Buttle, K.E. Howell, and J.R. McIntosh. (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci U S A. 98:2399–406.PubMedCrossRefGoogle Scholar
  55. Martin, S., A.K. Levine, Z.J. Chen, Y. Ughrin, and J.M. Levine. (2001) Deposition of the NG2 proteoglycan at nodes of Ranvier in the peripheral nervous system. J Neurosci. 21:8119–28.PubMedGoogle Scholar
  56. Martini, R. (2001) The effect of myelinating Schwann cells on axons. Muscle Nerve. 24:456–66.PubMedCrossRefGoogle Scholar
  57. Martone, M.E., A. Gupta, and M.H. Ellisman. (2004) E-neuroscience: challenges and triumphs in integrating distributed data from molecules to brains. Nat Neurosci. 7:467–72.PubMedCrossRefGoogle Scholar
  58. Martone, M.E., A. Gupta, M. Wong, X. Qian, G. Sosinsky, B. Ludascher, and M.H. Ellisman. (2002) A cell-centered database for electron tomographic data. J Struct Biol. 138:145–55.PubMedCrossRefGoogle Scholar
  59. Martone, M.E., Y.Z. Jones, S.J. Young, M.H. Ellisman, J.A. Zivin, and B.R. Hu. (1999) Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. J Neurosci. 19:1988–97.PubMedGoogle Scholar
  60. Martone, M.E., S. Zhang, A. Gupta, X. Qian, H. He, D.L. Price, M. Wong, S. Santini, and M.H. Ellisman. (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics. 1:379–95.PubMedCrossRefGoogle Scholar
  61. Mastronarde, D.N. (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol. 120:343–52.PubMedCrossRefGoogle Scholar
  62. Maxwell, W.L., A. Irvine, Graham, J.H. Adams, T.A. Gennarelli, R. Tipperman, and M. Sturatis. (1991) Focal axonal injury: the early axonal response to stretch. J Neurocytol. 20:157–64.PubMedCrossRefGoogle Scholar
  63. McDonald, K. (1999) High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Methods Mol Biol. 117:77–97.PubMedCrossRefGoogle Scholar
  64. Medalia, O., I. Weber, A.S. Frangakis, D. Nicastro, G. Gerisch, and W. Baumeister. (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298:1209–13.PubMedCrossRefGoogle Scholar
  65. Melendez-Vasquez, C.V., J.C. Rios, G. Zanazzi, S. Lambert, A. Bretscher, and J.L. Salzer. (2001) Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)- positive Schwann cell processes. Proc Natl Acad Sci U S A. 98:1235–40.PubMedCrossRefGoogle Scholar
  66. Mi, H., T.J. Deerinck, M.H. Ellisman, and T.L. Schwarz. (1995) Differential distribution of closely related potassium channels in rat Schwann cells. J Neurosci. 15:3761–74.PubMedGoogle Scholar
  67. Mi, H., T.J. Deerinck, M. Jones, M.H. Ellisman, and T.L. Schwarz. (1996) Inwardly rectifying K+ channels that may participate in K+ buffering are localized in microvilli of Schwann cells. J Neurosci. 16:2421–9.PubMedGoogle Scholar
  68. Mi, H., R.M. Harris-Warrick, T.J. Deerinck, I. Inman, M.H. Ellisman, and T.L. Schwarz. (1999) Identification and localization of Ca(2+)-activated K+ channels in rat sciatic nerve. Glia. 26:166–75.PubMedCrossRefGoogle Scholar
  69. Moor, H. (1987) Theory and practice of high pressure freezing. In Cryotechniques in Biological Electron Microscopy. R.A.Z. Steinbrecht, K. Steinbrecht,, editor. Springer-Verlag, Berlin. 175–191.Google Scholar
  70. Murray, N., and A.J. Steck. (1984) Impulse conduction regulates myelin basic protein phosphorylation in rat optic nerve. J Neurochem. 43:243–8.PubMedCrossRefGoogle Scholar
  71. Nakamura, T., J. Blechman, S. Tada, T. Rozovskaia, T. Itoyama, F. Bullrich, A. Mazo, C.M. Croce, B. Geiger, and E. Canaani. (2000) huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc Natl Acad Sci U S A. 97:7284–9.PubMedCrossRefGoogle Scholar
  72. Nicastro, D., A.S. Frangakis, D. Typke, and W. Baumeister. (2000) Cryo-electron tomography of neurospora mitochondria. J Struct Biol. 129:48–56.PubMedCrossRefGoogle Scholar
  73. Paul, D.L. (1995) New functions for gap junctions. Curr Opin Cell Biol. 7:665–72.PubMedCrossRefGoogle Scholar
  74. Penczek, P., M. Marko, K. Buttle, and J. Frank. (1995) Double-tilt electron tomography. Ultramicrosc. 60:393–410.CrossRefGoogle Scholar
  75. Perkins, G., C. Renken, M.E. Martone, S.J. Young, M. Ellisman, and T. Frey. (1997a) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol. 119:260–72.PubMedCrossRefGoogle Scholar
  76. Perkins, G.A., C.W. Renken, J.Y. Song, T.G. Frey, S.J. Young, S. Lamont, M.E. Martone, S. Lindsey, and M.H. Ellisman. (1997b) Electron tomography of large, multicomponent biological structures. J Struct Biol. 120:219–27.PubMedCrossRefGoogle Scholar
  77. Poliak, S., L. Gollan, D. Salomon, E.O. Berglund, R. Ohara, B. Ranscht, and E. Peles. (2001) Localization of Caspr2 in myelinated nerves depends on axonglia interactions and the generation of barriers along the axon. J Neurosci. 21:7568–75.PubMedGoogle Scholar
  78. Rios, J.C., M. Rubin, M. St Martin, R.T. Downey, S. Einheber, J. Rosenbluth, S.R. Levinson, M. Bhat, and J.L. Salzer. (2003) Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci. 23:7001–11.PubMedGoogle Scholar
  79. Ritchie, J.M., and R.B. Rogart. (1976) The binding of labelled saxitoxin to normal and denervated muscle [proceedings]. J Physiol. 263:129P-130P.PubMedGoogle Scholar
  80. Ritchie, J.M., and R.B. Rogart. (1977) Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci U S A. 74:211–5.PubMedCrossRefGoogle Scholar
  81. Rosenbluth, J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J Neurocytol. 5:731–45.PubMedCrossRefGoogle Scholar
  82. Salzer, J.L. (2003) Polarized domains of myelinated axons. Neuron. 40:297–318.PubMedCrossRefGoogle Scholar
  83. Scherer, S.S., L.J. Bone, S.M. Deschênes, A. Abel, R.J. Balice-Gordon, and K.H. Fischbeck. (1999) The role of the gap junction protein connexin32 in the pathogenesis of X-linked Charcot-Marie-Tooth disease. Novartis Foundation Symposium. 219:175–187.PubMedGoogle Scholar
  84. Scherer, S.S., T. Xu, P. Crino, E.J. Arroyo, and D.H. Gutmann. (2001) Ezrin, radixin, and moesin are components of Schwann cell microvilli. J Neurosci Res. 65:150–64.PubMedCrossRefGoogle Scholar
  85. Scherer, S.S., Y.T. Xu, P.G. Bannerman, D.L. Sherman, and P.J. Brophy. (1995) Periaxin expression in myelinating Schwann cells: modulation by axon- glial interactions and polarized localization during development. Development. 121:4265–73.PubMedGoogle Scholar
  86. Schnapp, B., and E. Mugnaini. (1975) The myelin sheath. Electron microscopic studies with thin section & freeze-fracture. In Golgi Centennial Symposium Proceedings. Raven Press, Inc., New York. 209–230.Google Scholar
  87. Shimoni, E., and M. Muller. (1998) On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J Microsc. 192:236–47.PubMedCrossRefGoogle Scholar
  88. Shoop, R.D., E. Esquenazi, N. Yamada, M.H. Ellisman, and D.K. Berg. (2002) Ultrastructure of a somatic spine mat for nicotinic signaling in neurons. J Neurosci. 22:748–56.PubMedGoogle Scholar
  89. Shrager, P. (1989) Sodium channels in single demyelinated mammalian axons. Brain Res. 483:149–54.PubMedCrossRefGoogle Scholar
  90. Sima, A.A. (1993) Diabetic neuropathy—the presence and future of a common but silent disorder. Mod Pathol. 6:399–401.PubMedGoogle Scholar
  91. Soto, G.E., S.J. Young, M.E. Martone, T.J. Deerinck, S. Lamont, B.O. Carragher, K. Hama, and M.H. Ellisman. (1994) Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage. 1:230–43.PubMedCrossRefGoogle Scholar
  92. Stiles, J.R., and T.M. Bartol. (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In Computational Neuroscience: Realistic Modeling for Experimentalists. E. De Schutter, editor. CRC Press.Google Scholar
  93. Stiles, J.R., T.M. Bartol, M.M. Salpeter, E.E. Salpeter, and T.J. Sejnowski. (2001) Synaptic variability: new insights from reconstructions and Monte Carlo simulations with MCell. In Synapses. W.M. Cowan, T.C. Sudhof, and C.F. Stevens, editors. Johns Hopkins University Press.Google Scholar
  94. Sward, C., C.H. Berthold, I. Nilsson-Remahl, and M. Rydmark. (1995) Axonal constriction at Ranvier’s node increases during development. Neurosci Lett. 190:159–62.PubMedCrossRefGoogle Scholar
  95. Tait, S., F. Gunn-Moore, J.M. Collinson, J. Huang, C. Lubetzki, L. Pedraza, D.L. Sherman, D.R. Colman, and P.J. Brophy. (2000) An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol. 150:657–66.PubMedCrossRefGoogle Scholar
  96. Trapp, B.D., S.B. Andrews, A. Wong, M. O’Connell, and J.W. Griffin. (1989) Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol. 18:47–60.PubMedCrossRefGoogle Scholar
  97. Tsukita, S., M. Furuse, and M. Itoh. (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol. 11:628–33.PubMedCrossRefGoogle Scholar
  98. Vabnick, I., S.D. Novakovic, S.R. Levinson, M. Schachner, and P. Shrager. (1996) The clustering of axonal sodium channels during development of the peripheral nervous system. J Neurosci. 16:4914–22.PubMedGoogle Scholar
  99. Vabnick, I., and P. Shrager. (1998) Ion channel redistribution and function during development of the myelinated axon. J Neurobiol. 37:80–96.PubMedCrossRefGoogle Scholar
  100. Venken, K., J. Meuleman, J. Irobi, C. Ceuterick, R. Martini, P. De Jonghe, and V. Timmerman. (2001) Caspr1/Paranodin/Neurexin IV is most likely not a common disease- causing gene for inherited peripheral neuropathies. Neuroreport. 12:2609–14.PubMedCrossRefGoogle Scholar
  101. Waxman, S.G., J.A. Black, P.K. Stys, and B.R. Ransom. (1992) Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Res. 574:105–19.PubMedCrossRefGoogle Scholar
  102. Waxman, S.G., and J.M. Ritchie. (1993) Molecular dissection of the myelinated axon. Ann Neurol. 33:121–36.PubMedCrossRefGoogle Scholar
  103. Webster, H.D. (1971) The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J Cell Biol. 48:348–67.PubMedCrossRefGoogle Scholar
  104. Webster, H.D., R. Martin, and M.F. O’Connell. (1973) The relationships between interphase Schwann cells and axons before myelination: a quantitative electron microscopic study. Dev Biol. 32:401–16.PubMedCrossRefGoogle Scholar
  105. Wiley, C.A., and M.H. Ellisman. (1980) Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier. J Cell Biol. 84:261–80.PubMedCrossRefGoogle Scholar
  106. Wiley-Livingston, C., and M.H. Ellisman. (1980) Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration. Dev Biol. 79:334–55.PubMedCrossRefGoogle Scholar
  107. Wiley-Livingston, C.A., and M.H. Ellisman. (1981) Myelination-dependent axonal membrane specializations demonstrated in insufficiently myelinated nerves of the dystrophic mouse. Brain Res. 224:55–67.PubMedCrossRefGoogle Scholar
  108. Wood, J.G., D.H. Jean, J.N. Whitaker, B.J. McLaughlin, and R.W. Albers. (1977) Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain. J Neurocytol. 6:571–81.PubMedCrossRefGoogle Scholar
  109. Wurtz, C.C., and M.H. Ellisman. (1986) Alterations in the ultrastructure of peripheral nodes of Ranvier associated with repetitive action potential propagation. J Neurosci. 6:3133–43.PubMedGoogle Scholar
  110. Yamamoto, K., A.C. Merry, and A.A. Sima. (1996) An orderly development of paranodal axoglial junctions and bracelets of Nageotte in the rat sural nerve. Brain Res Dev Brain Res. 96:36–45.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Gina E. Sosinsky
    • 1
    Email author
  • Thomas J. Deerinck
    • 1
  • Rocco Greco
    • 1
  • Casey H. Buitenhuys
    • 1
  • Thomas M. Bartol
    • 2
  • Mark H. Ellisman
    • 1
    Email author
  1. 1.National Center for Microscopy and Imaging Research, Department of Neurosciences and the Center for Research on Biological SystemsUniversity of CaliforniaSan Diego
  2. 2.Computational Neurobiology LaboratorySalk InstituteLa Jolla

Personalised recommendations