Neuroinformatics

, Volume 2, Issue 4, pp 369–379 | Cite as

Mining for associations between text and brain activation in a functional neuroimaging database

  • Finn Årup Nielsen
  • Lars Kai Hansen
  • Daniela Balslev
Original Article

Abstract

We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach coordinates. We invoke a simple probabilistic framework in which kernel density estimates are used to model distributions of brain activation foci conditioned on words in a given abstract. The principal associations are found in the joint probability density between words and voxels. We show that the statistically motivated associations are well aligned with general neuroscientific knowledge.

Index Entries

Databases data interpretation, statistical information storage and retrieval magnetic resonance imaging positron-emission tomography brain mapping meta-analysis neuroimaging data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., and Swami, A. (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, May 26–28, 1993. Buneman, P. and Jajodia, S. (eds.) ACM Press, New York, pp. 207–216.CrossRefGoogle Scholar
  2. Brett, M. (1999) The MNI brain and the Talairach atlas. http://www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html (accessed March 17, 2003).Google Scholar
  3. Cabeza, R. and Nyberg, L. (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47.CrossRefGoogle Scholar
  4. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990) Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41, 391–407.CrossRefGoogle Scholar
  5. Fox, P. T. and Lancaster, J. L. (1994) Neuroscience on the net. Science 266, 994–996.CrossRefGoogle Scholar
  6. Fox, P. T. and Lancaster, J. L. (2002) Mapping context and content: the BrainMap model. Nat. Rev. Neurosci. 3, 319–321.CrossRefGoogle Scholar
  7. Gerlach, C., Law, I., Gade, A., and Paulson, 0. B. (1999) Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 122 (11), 2159–2170.CrossRefGoogle Scholar
  8. Heimer, L. (1994) The Human Brain and Spinal Cord. Functional Neuroanatomy and Dissection Guide, 2nd edn. Springer-Verlag, New York. Ingvar, M. (1999) Pain and functional imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1347–1358.Google Scholar
  9. Ishai, A., Ungerleider, L. G., Martin, A., and Haxby, J. V. (2000) The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12, 35–51.CrossRefGoogle Scholar
  10. Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M., and Jancke, L. (2001) Cortical activations during the mental rotation of different visual objects. Neuroimage 13, 143–152.CrossRefGoogle Scholar
  11. Kolenda, T., Hansen, L. K., Larsen, J., and Winther, O. (2002) Independent component analysis for understanding multimedia content. In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing XII. Bourlard, H., Adali, T., Bengio, S., Larsen, J., and Douglas, S. (eds.) IEEE Press, NJ, pp. 757–766.CrossRefGoogle Scholar
  12. Koperski, K. and Han, J. (1995) Discovery of spatial association rules in geographic information databases. In: Advances in Spatial Databases, 4th International Symposium SSD ’95, Portland, ME, August 6–9, 1995. In: Lecture Notes in Computer Science, vol. 951. Egenhofer, M. J. and Herring, J. R. (eds.) Springer, Heidelberg, Germany, pp. 47–66.Google Scholar
  13. Lancaster, J. L., Rainey, L. H., Summerlin, J. L., et al. (1997) Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum. Brain Mapp. 5, 238–242.CrossRefGoogle Scholar
  14. Lee, D. D. and Seung, H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791.CrossRefGoogle Scholar
  15. Lee, D. D. and Seung, H. S. (2001) Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems 13, Proceedings of the 2000 Conference. Leen, T. K., Dietterich, T. G., and Tresp, V. (eds.) MIT Press, Cambridge, MA, pp. 556–562.Google Scholar
  16. Nielsen, F. Å. (2003) The Brede database: a small database for functional neuroimaging. Neuroimage 19. Presented at the 9th International Conference on Functional Mapping of the Human Brain, New York, NY, June 19–22, 2003. Also available on CD-ROM.Google Scholar
  17. Nielsen, F. Å. and Hansen, L. K. (2000) Experiences with Matlab and VRML in functional neuroimaging visualizations. In: VDE2000-Visualization Development Environments, Workshop Proceedings, Princeton, NJ, April 27–28, 2000. Klasky, S. and Thorpe, S. (eds.) Princeton Plasma Physics Laboratory, Princeton, NJ, pp. 76–81.Google Scholar
  18. Nielsen, F. Å. and Hansen, L. K. (2002a) Automatic anatomical labeling of Talairach coordinates and generation of volumes of interest via the BrainMap database. NeuroImage 16. Presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, June 2–6, 2002. Also available on CD-ROM.Google Scholar
  19. Nielsen, F. Å. and Hansen, L. K. (2002b) Modeling of activation data in the BrainMap™ database: detection of outliers. Hum. Brain Mapp. 15, 146–156.CrossRefGoogle Scholar
  20. Nielsen, F. Å. and Hansen, L. K. (2004) Finding related functional neuroimaging volumes. Artif. Intell. Med. 30, 141–151.CrossRefGoogle Scholar
  21. Rehm, K., Lakshminarayan, K., Frutiger, S. A., et al. (1998) A symbolic environment for visualizing activated foci in functional neuroimaging datasets. Med. Image Anal. 2, 215–226.CrossRefGoogle Scholar
  22. Rorden, C. and Brett, M. (2000) Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200.Google Scholar
  23. Talairach, J. and Tournoux, P. (1988) Co-planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publisher Inc, New York.Google Scholar
  24. Turkeltaub, P. E., Eden, G. F., Jones, K. M., and Zeffiro, T. A. (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage 16, 765–780.CrossRefGoogle Scholar
  25. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289.CrossRefGoogle Scholar
  26. Van Horn, J. D., Grethe, J. S., Kostelec, P., et al. (2001) The functional magnetic resonance imaging data center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1323–1339.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 2004

Authors and Affiliations

  • Finn Årup Nielsen
    • 1
    • 2
  • Lars Kai Hansen
    • 2
  • Daniela Balslev
    • 1
    • 3
  1. 1.Neurobiology Research Unit, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
  2. 2.Informatics and Mathematical ModellingTechnical University of DenmarkLyngbyDenmark
  3. 3.Danish Research Centre for Magnetic ResonanceCopenhagen University HospitalHvidovreDenmark

Personalised recommendations