Neuroinformatics

, Volume 2, Issue 2, pp 183–204 | Cite as

Connectivity and dynamics of neural information processing

  • Viktor K. Jirsa
Review Article

Abstract

In this article, we systematically review the current literature on neural connectivity and dynamics, or equivalently, structure and function. In particular, we discuss how changes in the connectivity of a neural network affect the spatiotemporal network dynamics qualitatively. The three major criteria of comparison are, first, the local dynamics at the network nodes which includes fixed point dynamics, oscillatory and chaotic dynamics; second, the presence of time delays via propagation along connecting pathways; and third, the properties of the connectivity matrix such as its statistics, symmetry, and translational invariance. Since the connection topology changes when anatomical scales are traversed, so will the corresponding network dynamics change. As a consequence different types of networks are encountered on different levels of neural organization.

Index Entries

Neural networks dynamics connectivity time delay synchronization stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M. (1991) Corticonics. Cambridge University Press.Google Scholar
  2. Albert, R. and Barabási, A., L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97.CrossRefGoogle Scholar
  3. Amari, S. (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87.CrossRefGoogle Scholar
  4. Arbib, M. and Érdi, P. (2000) Structure, Function, and Dynamics: An Integrated Approach to Neural Organization. Behavioral and Brain Sciences 23, 513–571.CrossRefGoogle Scholar
  5. Atay, F.M. (2003) Distributed Delays Facilitate Amplitude Death of Coupled Oscillators. Phys. Rev. Lett. 91, 094101.Google Scholar
  6. Barabási, A.L. and Albert R. (1999) Emergence of scaling in random networks. Science 286, 509.CrossRefGoogle Scholar
  7. Bélair, J. (1992) Stability in delayed networks. In: Stability in delayed neural networks, Ordinary and delay differential equations. Hale, J., Wer J. and Longnan (eds.), 6, 1–4.Google Scholar
  8. Bélair, J. (1993) Stability in a model of a delayed neural network. J. Dynamics Differential Equations. 5, 607–623.CrossRefGoogle Scholar
  9. Braitenberg, V. and Schüz, A. (1991) Anatomy of the cortex. Statistics and geometry. Springer, Berlin Heidelberg New York.Google Scholar
  10. Brauer, F. (1987) Absolute stability in delay equations. J. Diff. Equ. 69, 185–191.CrossRefGoogle Scholar
  11. Bressler, S.L. (2002) Understanding cognition through large-scale cortical networks. Curr. Dir. Psych. Sci. 11, 58–61.CrossRefGoogle Scholar
  12. Bressler, S.L. (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychpharmacology 28, 535–539.Google Scholar
  13. Bressler, S.L. and Kelso, J.A.S. (2001) Cortical coordination dynamics and cognition. Trends in Cog. Sci. 5, 26–36.CrossRefGoogle Scholar
  14. Bressloff, P.C. (1996) New mechanism for neural pattern formation. Phys. Rev. Let 76, 4644–4647.CrossRefGoogle Scholar
  15. Calvert, G.A. (2001) Crossmodal Processing in the Human Brain: Insights from functional neuroimaging studies. Cereb. Cortex 11, 1110–1123.CrossRefGoogle Scholar
  16. Campbell, S.R. and Wang, D. (1998) Relaxation oscillators with time delay coupling. Physica D 111, 151–178.CrossRefGoogle Scholar
  17. Chen, L. and Aihara, K. (2002) Stability of genetic regulatory networks with time delay. IEEE Trans. Circ. Sys. 49 (5) 602–608.CrossRefGoogle Scholar
  18. Chen, Y., Rangarajan, G., and Ding, M. (2003) General stability analysis of synchronized dynamics in coupled systems. Phys. Rev. E 67, 026209.Google Scholar
  19. Cohen, M.A. and Grossberg, S. (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 815–826.Google Scholar
  20. Coombes, S., Lord, G.J., and Owen, M.R. (2003) Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D 178, 219–241.CrossRefGoogle Scholar
  21. Cross, M.C. and Hohenberg, P.C. (1993) Pattern Formation Outside of Equilibrium. Rev. Mod. Phys. 65, 851.CrossRefGoogle Scholar
  22. De Monte, S., d’Ovidio, F., and Mosekilde, E. (2003) Coherent regimes of globally coupled dynamical systems. Phys. Rev. Let. 90, 054102.Google Scholar
  23. Earl, M.G. and Strogatz, S.H. (2003) Synchronization in oscillator networks with delayed coupling: A stability criterion. Phys. Rev. E 67, 036204.Google Scholar
  24. Eggert, J. and van Hemmen, J.L. (2001) Modeling neuronal assemblies: theory and implementation. Neural Computation 13, 1923–1974.CrossRefGoogle Scholar
  25. Erdös, P. and Rényi, A. (1959) Publ. Math. (Debrecen) 6, 290.Google Scholar
  26. Erlhagen, W. and Schöner, G. (2002) Dynamic field theory of motor programming. Psychological Review 109 (3), 545–572.CrossRefGoogle Scholar
  27. Ermentrout, B. (1998) Neural networks as spatiotemporal patternforming systems. Rep. Prog. Phys. 61, 353–430.CrossRefGoogle Scholar
  28. FitzHugh, R. (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466.Google Scholar
  29. Frank, T.D., Daffertshofer, A., Beek, P.J., and Haken, H. (1999). Impacts of noise on a field theoretical model of the human brain. Physica D, 127, 233–249.CrossRefGoogle Scholar
  30. Frank, T. D., Daffertshofer, A., Peper, C. E., Beek, P. J., and Haken, H. (2000). Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces. Physica D, 144, 62–86.CrossRefGoogle Scholar
  31. Freeman, W.J. (1975) Mass action in the nervous system. Academic Press New York.Google Scholar
  32. Freeman, W.J. (1992) Tutorial on neurobiology: From single neurons to brain chaos. Inter. Journ. Bif. Chaos 2, 451–482.CrossRefGoogle Scholar
  33. Fuchs, A., Kelso, J.A.S., and Haken, H. (1992) Phase Transitions in the Human Brain: Spatial Mode Dynamics. Inter. Journ. Bif. Chaos 2, 917–939.CrossRefGoogle Scholar
  34. Fuchs, A., Jirsa, V.K., and Kelso, J.A.S. (2000) Issues for the coordination of human brain activity and motor behavior, NeuroImage 11, 375–377.CrossRefGoogle Scholar
  35. Gerstner, W. (2000) Population Dynamics of Spiking Neurons: Fast Transients, Asynchronous States, and Locking. Neural Computation 12, 43–89.CrossRefGoogle Scholar
  36. Gerstner, W. and Kistler, W.M. (2002) Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press.Google Scholar
  37. Grossberg, S. (1988) Nonlinear Neural Networks: Principles, Mechanisms, and Architectures. Neural Networks 1, 17–61.CrossRefGoogle Scholar
  38. Haken, H. (1975) Cooperative phenomena in systems far from thermal equilibrium and in non-physical systems. Rev. Mod. Phys. 47.1, 67–121.CrossRefGoogle Scholar
  39. Hendrey, M., Ott E., and Antonsen T.M. Jr. (1999) Effect of inhomogeneity on spiral wave dynamics. Phys. Rev. Let. 82, 859–862.CrossRefGoogle Scholar
  40. Hindmarsh, J.L. and Rose, R.M. (1984) A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. London, Ser. B 221, 87.Google Scholar
  41. Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558.CrossRefGoogle Scholar
  42. Hopfield, J.J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 81, 3088–3092.CrossRefGoogle Scholar
  43. Horwitz, B., Friston, K.J., and Taylor, J.G. (2000) Neural modeling and functional brain imaging: an overview. Neural Networks 13, 829–846.CrossRefGoogle Scholar
  44. Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.Google Scholar
  45. Huberman, B.A., Pirolli, P.L.T., Pitkow, J.E., and Luose, R.M. (1998) Strong regularities in World Wide Web surfing. Science 280, 95.CrossRefGoogle Scholar
  46. Huberman, B.A. and Adamic, L.A. (1999) Internet-Growth dynamics of the world-wide web. Nature 401, 131.Google Scholar
  47. Jirsa, V.K., Friedrich, R., Haken, H., and Kelso, J.A.S. (1994) A theoretical model of phase transitions in the human brain. Biol. Cybern. 71, 27–35.Google Scholar
  48. Jirsa, V.K., Friedrich, R., and Haken, H. (1995) Reconstruction of the spatiotemporal dynamics of a human magnetoencephalogram, Physica D 89, 100–122.CrossRefGoogle Scholar
  49. Jirsa, V.K. and Haken, H. (1996) Field theory of electromagnetic brain activity. Phys. Rev. Let. 77, 960–963.CrossRefGoogle Scholar
  50. Jirsa, V.K. and Haken, H. (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D 99, 503–526.CrossRefGoogle Scholar
  51. Jirsa, V.K., Fuchs, A., and Kelso, J.A.S. (1998) Connecting cortical and behavioral dynamics: bimanual coordination. Neural Computation 10, 2019–2045.CrossRefGoogle Scholar
  52. Jirsa, V.K. and Kelso, J.A.S. (2000) Spatiotemporal pattern formation in continuous systems with heterogeneous connection topologies. Phys. Rev. E 62, 6, 8462–8465.CrossRefGoogle Scholar
  53. Jirsa, V.K., Jantzen, K.J., Fuchs, A., and Kelso, J.A.S. (2002) Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Transactions on Medical Imaging, 21, 5, 493–504.CrossRefGoogle Scholar
  54. Jirsa, V.K. (2002) Heterogeneous connectivity patterns alter the timing variability in spatially distributed dynamic systems. Nonlinear Phenomena In Complex Systems 5 (4), 356–363.Google Scholar
  55. Jirsa, V.K. (2004) Information processing in brain and behavior displayed in large-scale scalp topographies such as EEG and MEG. Intern. J. Bif. Chaos 14 (2).Google Scholar
  56. Jirsa, V.K. and Ding, M. (2004) Will a large complex system with delays be stable? Phys. Rev. Lett., in press.Google Scholar
  57. Kiss, T. and Érdi, P. (2002) Mesoscopic Neurodynamics. BioSystems 64, 119–126.CrossRefGoogle Scholar
  58. Kaneko, K (1997) Dominance of Milnor Attractors and Noise-Induced Selection in a Multiattractor System. Phys. Rev. Lett. 78, 2736–2739.CrossRefGoogle Scholar
  59. Kelso, J.A.S., Bressler, S.L., Buchanan, S., DeGuzman, G.C., Ding M., Fuchs A., and Holroyd T. (1992) A phase transition in human brain and behavior. Physics Letters A 169, 134–144.CrossRefGoogle Scholar
  60. Kötter, R. and Sommer, F.T. (2000) Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Phil. Trans. R. Soc. Lond. B 355, 127–134.CrossRefGoogle Scholar
  61. Lago-Fernández, L.F., Huerta, R., Corbacho, F., and Sigüenza, J.A. (2000) Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Let. 84, 2758–2761.CrossRefGoogle Scholar
  62. Large, E.W. (2001) Periodicity, pattern formation, and metric structure. Journal of New Music Research 22, 173–185.CrossRefGoogle Scholar
  63. MacDonald, N. (1989) Biological delay systems: linear stability theory. Cambridge University Press.Google Scholar
  64. Mallot, H.A. and Brittinger, R. (1989) Towards a network theory of cortical areas. In: Cotteril R.M.J. (ed.) Models of brain function. Cambridge University Press, 175–189.Google Scholar
  65. Mallot, H.A. and Giannakopoulos, F. (1996) population networks: a large-scale framework for modelling cortical neural networks. Biol. Cybern. 75, 441–452.CrossRefGoogle Scholar
  66. Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215.CrossRefGoogle Scholar
  67. Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962) An active pulse transmission line simulating nerve axon. Proc. IRE, 50, 2061–2070.CrossRefGoogle Scholar
  68. Nunez, P.L. (1974) The brain wave equation: A model for the EEG. Mathematical Biosciences 21, 279–297.CrossRefGoogle Scholar
  69. Nunez, P.L. (1995) Neocortical dynamics and human EEG rhythms, Oxford University Press.Google Scholar
  70. Ott, E., So, P., Barreto, E., and Antonsen, T. (2002) The onset of synchronization in systems of globally coupled chaotic and periodic oscillators. Physica D 173, 29–51.CrossRefGoogle Scholar
  71. Pecora, L.M., and Carroll, T.L. (1998) Master stability functions for synchronized coupled systems. Phys. Rev. Let. 80, 2109–2112.CrossRefGoogle Scholar
  72. Robinson, P.A., Rennie, C.J., and Wright, J.J. (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E56, 826.Google Scholar
  73. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali H., Gordon, E., and Rowe, D.L. (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 021903.Google Scholar
  74. Reddy, D.V.R., Sen, A., and Johnston, G.L. (1999) Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129, 15–34.CrossRefGoogle Scholar
  75. Shayer, L.P. and Campbell, S.A. (2000) Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61, 673–700.CrossRefGoogle Scholar
  76. Shehadeh, L., Liebovitch, L.S., and Jirsa, V.K. (2004) Patterns of Genetic Interactions within Genomic Networks, in Neurosciences. From biological systems to cognitive robotics. Lindsay K.A., Poznanski R.R., Rosenberg J.R., Sporns O. (eds.) CRC Press London, New York, Tokyo.Google Scholar
  77. Singer, W. and Gray, C. (1995) Visual feature integration and the temporal correlation hypothesis. Ann. Rev. Neurosci. 18, 555–586.CrossRefGoogle Scholar
  78. Sporns, O., Tononi, G., and Edelman, G.M. (2000) Theoretical Neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10, 127–141.CrossRefGoogle Scholar
  79. Sporns, O., and Tononi, G. (2002) Classes of Network connectivity and dynamics. Complexity 7, 28–38.CrossRefGoogle Scholar
  80. Sporns, O. (2004) Complex Neural Dynamics. In: Coordination Dynamics: Issues and Trends. Jirsa V.K. & Kelso J.A.S. (eds.) Springer Berlin.Google Scholar
  81. Steyn-Ross, M.L., Steyn-Ross, D. A., Sleigh, J. W., and Liley, D.T.J. (1999) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60, 7299–7311.CrossRefGoogle Scholar
  82. Tagamets, M.A. and Horwitz, B. (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb. Cortex 8, 310–320.CrossRefGoogle Scholar
  83. Van den Driessche, P. and Zou, X. (1998) Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58 (6) 1878–1890.CrossRefGoogle Scholar
  84. Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of small-world’ networks. Nature 393, 440–442.CrossRefGoogle Scholar
  85. Wilson, H.R. and Cowan, J.D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12, 1–24.CrossRefGoogle Scholar
  86. Wilson, H.R. and Cowan, J.D. (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80.CrossRefGoogle Scholar
  87. Wright, J.J. and Liley, D.T.J. (1996) Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav. Brain. Sci. 19, 285.CrossRefGoogle Scholar
  88. Zhao H.Y. (2003) Global stability of neural networks with distributed delays. Phys. Rev. E 68, 051909.Google Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Viktor K. Jirsa
    • 1
  1. 1.Center for Complex Systems and Brain Sciences, Physics DepartmentFlorida Atlantic UniversityBoca Raton

Personalised recommendations