, Volume 2, Issue 2, pp 145–162 | Cite as

The small world of the cerebral cortex

Review Article


While much information is available on the structural connectivity of the cerebral cortex, especially in the primate, the main organizational principles of the connection patterns linking brain areas, columns and individual cells have remained elusive. We attempt to characterize a wide variety of cortical connectivity data sets using a specific set of graph theory methods. We measure global aspects of cortical graphs including the abundance of small structural motifs such as cycles, the degree of local clustering of connections and the average path length. We examine large-scale cortical connection matrices obtained from neuroanatomical data bases, as well as probabilistic connection matrices at the level of small cortical neuronal populations linked by intra-areal and interareal connections. All cortical connection matrices examined in this study exhibit “small-world” attributes, characterized by the presence of abundant clustering of connections combined with short average distances between neuronal elements. We discuss the significance of these universal organizational features of cortex in light of functional brain anatomy. Supplementary materials are at∼cortex/lab.htm.

Index Entries

Network computational neuroanatomy small world complexity information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, R., Jeong, H., and Barabasi, A. -L. (1999) Diameter of the world wide web. Nature 401, 130–131.CrossRefGoogle Scholar
  2. Albert, R. and Barabasi, A. -L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97.CrossRefGoogle Scholar
  3. Amaral, L. A. N., Scala, A., Barthelemy, M., and Stanley, H. E. (2000) Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149–11152.CrossRefGoogle Scholar
  4. Ascoli, G. A. (2002) Computational Neuroanatomy. Principles and Methods. Humana Press, Totowa, NJ.Google Scholar
  5. BAMS (2003) Brain Area Management System. Scholar
  6. Barabasi, A. -L. (2002) Linked. The New Science of Networks. Perseus, Cambridge, MA.Google Scholar
  7. Barahona, M., and Pecora, L. M. (2002) Synchronization in small-world systems. Phys. Rev. Lett. 89, #054101.Google Scholar
  8. Bressler, S. L. (1995) Large-scale cortical networks and cognition. Brain Research Reviews 20, 288–304.CrossRefGoogle Scholar
  9. Bota, M., Dong, H. -W., and Swanson, L. W. (2003) From gene networks to brain networks. Nature Neuroscience 6, 795–799.CrossRefGoogle Scholar
  10. Braitenberg, V. and Schüz, A. (1998) Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, Berlin.Google Scholar
  11. Breakspear, M., Terry, J. R., and Friston, K. J. (2003) Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14, 703–732.CrossRefGoogle Scholar
  12. Chartrand, G. and Lesniak, L. (1996) Graphs and Digraphs. Chapman and Hall, Boca Raton, FL.Google Scholar
  13. Cocomac (2003) Collations of Connectivity Data on the Macaque Brain. Scholar
  14. Crick, F. and Jones, E. (1993) The backwardness of human neuroanatomy. Nature 361, 109–110.CrossRefGoogle Scholar
  15. Felleman, D. J. and Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 1–47.CrossRefGoogle Scholar
  16. Graziano, M. S. A, Reiss, L. A. J., and Gross, C. D. (1999) A neuronal representation of the location of nearby sounds. Nature 397, 428–430.CrossRefGoogle Scholar
  17. Harary, F. (1969) Graph Theory. Addison-Wesley, Reading, MA.Google Scholar
  18. Hellwig, B. (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121.CrossRefGoogle Scholar
  19. Hilgetag, C. C., Burns, G. A. P. C., O’Neill, M. A., Scannell, J. W., and Young, M. P. (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philosophical Transactions of the Royal Society London B 355, 91–110.CrossRefGoogle Scholar
  20. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. and Barabasi, A. -L. (2000) The large-scale organization of metabolic networks. Nature 407, 651–654.CrossRefGoogle Scholar
  21. Kleinberg, J. M. (2000) Navigation in a small world. Nature 406, 845.CrossRefGoogle Scholar
  22. Kötter, R. (2001) Neuroscience databases: tools for exploring brain structure-function relationships. Philosophical Transactions of the Royal Society London B 356, 1111–1120.CrossRefGoogle Scholar
  23. Kötter, R. and Stephan, K. E. (2003) Network participation indices: Characterizing component roles for information processing in neural networks. Neural Networks, 16, 1261–1275.CrossRefGoogle Scholar
  24. Latora, V. and Marchiori, M. (2001) Efficient behavior of small-world networks. Phys. Rev. Lett. 87, #198701.Google Scholar
  25. Lewis, J. W. and Van Essen, D. C. (2000) Cortico-cortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the Macaque monkey. J. Comp. Neurol. 428, 112–137.CrossRefGoogle Scholar
  26. Liley, D. T. J. and Wright, J. J. (1994) Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network: Computation in Neural Systems 5, 175–189.CrossRefGoogle Scholar
  27. Martin, R., Kaiser, M., Andras, P., and Young, M. (2001) Is the brain a scale-free network? Soc. Neurosci. Abstr. 27, 814–816Google Scholar
  28. Maslov, S. and Sneppen, K. (2002) Specificity and stability in topology of protein networks. Science 296, 910–913.CrossRefGoogle Scholar
  29. Milgram, S. (1967) The small world problem. Psychol. Today 1, 61–67.Google Scholar
  30. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002) Network motifs: simple building blocks of complex networks. Science 298, 824–827.CrossRefGoogle Scholar
  31. Nicoll, A. and Blakemore, C. (1993) Patterns of local connectivity in the neocortex. Neural Computation 5, 665–680.Google Scholar
  32. Passingham, R. E., Stephan, K. E., and Kotter, R. (2002) The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience 3, 606–616.Google Scholar
  33. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabasi, A.-L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555.CrossRefGoogle Scholar
  34. Rives, A. W. and Galitski, T. (2003) Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133.CrossRefGoogle Scholar
  35. Scannell, J. W. and Young, M. P. (1993) The connectional organization of neural systems in the cat cerebral cortex. Current Biology 3, 191–200.CrossRefGoogle Scholar
  36. Scannell, J. W., Blakemore, C., and Young, M. P. (1995) Analysis of connectivity in the cat cerebral cortex. Journal of Neuroscience 15, 1463–1483.Google Scholar
  37. Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O’Neil, M. A., and Young, M. P. (1999) The connectional organization of the cortico-thalamic system of the cat. Cerebral Cortex 9, 277–299.CrossRefGoogle Scholar
  38. Sporns, O. (2002) Graph theory methods for the analysis of neural connectivity patterns. Kötter, R. (ed.) Neuroscience Databases. A Practical Guide, Klüwer, Boston, MA, pp. 171–185.Google Scholar
  39. Sporns, O. (2004) Complex neural dynamics. In: Coordination Dynamics: Issues and Trends, Jirsa, V. K. and Kelso, J. A. S., eds. pp. 197–215.Google Scholar
  40. Sporns, O., Tononi, G., and Edelman, G. M. (2000) Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10, 127–141.CrossRefGoogle Scholar
  41. Sporns, O. and Tononi, G. (2002) Classes of network connectivity and dynamics. Complexity 7, 28–38.CrossRefGoogle Scholar
  42. Strogatz, S. H. (2001) Exploring complex networks. Nature (London) 410, 268–277.CrossRefGoogle Scholar
  43. Tononi, G., Edelman, G. M., and Sporns, O. (1998) Complexity and coherency: Integrating information in the brain. Trends in Cognitive Sciences 2, 474–484.CrossRefGoogle Scholar
  44. USC Brain Project (2003) Scholar
  45. Varela, F., Lachaux, J. -P., Rodriguez, E., and Martinerie, J. (2001) The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience 2, 229–239.CrossRefGoogle Scholar
  46. Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of ‘small-world’ networks. Nature 393, 440–442.CrossRefGoogle Scholar
  47. Watts, D. J. (1999) Small Worlds. Princeton University Press, Princeton, NJ.Google Scholar
  48. Watts, D. J. (2003) Six Degrees. The Science of a Connected Age. W.W. Norton, New York.Google Scholar
  49. Young, M. P. (1993) The organizatio of neural systems in the primate cerebral cortex. Proc. R. Soc. Lond. B 252, 13–18.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of PsychologyIndiana UniversityBloomington

Personalised recommendations