Neuroinformatics

, Volume 2, Issue 2, pp 127–144

Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac Database

  • Rolf Kötter
Original Article

Abstract

Connectivity is the key to understanding distributed and cooperative brain functions. Detailed and comprehensive data on large-scale connectivity between primate brain areas have been collated systematically from published reports of experimental tracing studies. Although the majority of the data have been made easily available for online retrieval, the multiplicity of brain maps and the precise requirements of anatomical naming limit the intuitive access to the data. The quality of data retrieval can be improved by observing a small set of conventions in data representation. Standardized interfaces open up further opportunities for automated search and retrieval, for flexible visualization of data, and for interoperability with other databases. This article provides a discussion and examples in text and image of the capabilities of the online interface to the CoCoMac database of primate connectivity. These serve to point out sources of potential confusion and failure, and to demonstrate the automated interfacing with other neuroinformatics resources that facilitate selection and processing of connectivity data, for example, for computational modelling and interpretation of functional imaging studies.

Index Entries

Anatomy cerebral cortex computer modeling imaging data analysis interoperability macaque mapping projections XML 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H. B., and Zilles, K. (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341.CrossRefGoogle Scholar
  2. Backhaus, K., Erichson, B., Plinke, W., and Weiber, R. (1996) Multivariate Analysemethoden, Springer, Berlin, Heidelberg, New York.Google Scholar
  3. Bowden, D. M. and Dubach, M. (2002) NeuroNames (2002) Neuroinformatics 1, 43–59.CrossRefGoogle Scholar
  4. Brodmann, K. (1905) Beiträge zur histologischen Lokalisation der Grosshirnrinde, III, Die Rindenfelder der niederen Affen. J. Psychol. Neurol. 4, 177–226.Google Scholar
  5. Brodmann, K. (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Barth, Leipzig, Germany.Google Scholar
  6. Büchel, C. and Friston, K. J. (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex 7, 768–778.CrossRefGoogle Scholar
  7. Burns, G. A. P. C. (1997) Neural connectivity of the rat: theory, methods and applications, DPhil thesis, University of Oxford, Oxford.Google Scholar
  8. Burns, G. A. P. C. and Young, M. P. (2000) Analysis of the connectional organisation of neural systems associated with the hippocampus in rats. Philos. Trans. R. Soc. Lond. B 355, 55–70.CrossRefGoogle Scholar
  9. Burns, G. A. P. C. (2001) Knowledge management of the neuroscientific literature: the data model and underlying strategy of the NeuroScholar system. Philos. Trans. R. Soc. Lond. B 356, 1187–1208.CrossRefGoogle Scholar
  10. Cannon, R. C., Hasselmo, M. E., and Koene, R. A. (2003) From biophysics to behavior. Catacomb2 and the design of biologically-plausible models for spatial navigation. Neuroinformatics 1, 3–42.CrossRefGoogle Scholar
  11. Cusick, C. G., Seltzer, B., Cola, M., and Griggs, E. (1995) Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J. Comp. Neurol. 360, 513–535.CrossRefGoogle Scholar
  12. Desimone, R., and Ungerleider, L. G. (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol. 248, 164–89.CrossRefGoogle Scholar
  13. Felleman, D. J., and Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex. 1, 1–47.CrossRefGoogle Scholar
  14. Friston, K. J. (1995) Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78.CrossRefGoogle Scholar
  15. Friston, K. J., Harrison, L., and Penny, W. (2003) Dynamic causal modelling. Neuroimage 19, 1273–302.CrossRefGoogle Scholar
  16. Hackett, T. A., Stepniewska, I., and Kaas, J. H. (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp. Neurol. 394, 475–95.CrossRefGoogle Scholar
  17. Kamper, L., Bozkurt, A., Rybacki, K., Geissler, A., Gerken, I., Stephan, K. E., and Kötter R. (2003) An introduction to CoCoMac-Online. The online-interface of the primate connectivity database CoCoMac, in Neuroscience databases. A practical guide, Kötter, R., ed., Kluwer Academic Publishers, Boston, pp. 155–169.Google Scholar
  18. Kötter, R. and Sommer, F. T. (2000) Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Phil. Trans. R. Soc. Lond. B 355, 127–134.CrossRefGoogle Scholar
  19. Kötter, R. and Stephan, K. E. (2003) Network participation indices: Characterizing component roles for processing in neural networks. Neural Networks 16, 1261–1275.CrossRefGoogle Scholar
  20. Kötter, R., Stephan, K. E., Palomero-Gallagher, N., Geyer, S., Schleicher, A., and Zilles, K. (2001) Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat. Embryol. 204, 333–349.CrossRefGoogle Scholar
  21. Leergaard, T. B., Alloway, K. D., Mutic, J. J., and Bjaalie, J. G. (2000) Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J. Neurosci. 20, 8474–8484.Google Scholar
  22. Lewis, J. W. and Van Essen, D. C. (2000a) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111.CrossRefGoogle Scholar
  23. Lewis, J. W. and Van Essen, D. C. (2000b) Cortico-cortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137.CrossRefGoogle Scholar
  24. McIntosh, A. R. and Gonzalez-Lima, F. (1994) Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance structural modeling. J Neurophysiol. 72, 1717–1733.Google Scholar
  25. Olszewski, J. (1952) The thalamus of Macaca mulatta, S. Karger, New York.Google Scholar
  26. Pandya, D. N. and Seltzer, B. (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 204, 196–210.CrossRefGoogle Scholar
  27. Paxinos, G., Huang, X. F., and Toga, A. W. (2000) The Rhesus Monkey Brain in Stereotaxic Coordinates, Academic Press, San Diego, CA.Google Scholar
  28. Rockland, K. S. and Van Hoesen, G. W. (1994) Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4, 300–313.CrossRefGoogle Scholar
  29. Scannell, J. W., Blakemore, C., and Young, M. P. (1995) Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463–1483.Google Scholar
  30. Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O’Neil, M. A., and Young, M. P. (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299.CrossRefGoogle Scholar
  31. Stephan, K. E., Zilles, K., and Kötter, R. (2000) Coordinate-independent mapping of structural and functional data by Objective Relational Transformation (ORT). Phil. Trans. R. Soc. Lond. B 355, 37–54.CrossRefGoogle Scholar
  32. Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G. A. P. C., Young, M. P., and Kötter, R. (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Phil. Trans. R. Soc. Lond. B 356, 1159–1186.CrossRefGoogle Scholar
  33. Stephan, K. E. and Kötter, R (1998) A formal approach to the translation of cortical maps, in Neural circuits and networks, Torre, V. and Nicholls, J., ed., Springer, Berlin, pp. 205–226.Google Scholar
  34. Vogt, B. A., Pandya, D. N., and Rosene, D. L. (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262, 256–270.CrossRefGoogle Scholar
  35. Von Bonin, G. and Bailey, P. (1947) The neocortex of Macaca mulatta, University of Illinois Press, Urbana, IL.Google Scholar
  36. Walker, A. E. (1940) A cytoarchitectural study of the prefrontal areas of macaque monkey. J. Comp. Neurol. 98, 59–86.CrossRefGoogle Scholar
  37. Young, M. P. (1993) The organization of neural systems in the primate cerebral cortex. Phil. Trans. R. Soc. Lond. B 252, 13–18.Google Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Rolf Kötter
    • 1
  1. 1.C. & O.Vogt Brain Research Institute and Institute of Anatomy IIHeinrich Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations