, Volume 1, Issue 4, pp 299–308 | Cite as


Web-based complex trait analysis
  • Jintao Wang
  • Robert W. Williams
  • Kenneth F. Manly
Original Article


WebQTL is a website that combines databases of complex traits with fast software for mapping quantitative trait loci (QTLs) and for searching for correlations among traits. WebQTL also includes well-curated genotype data for five sets of mouse recombinant inbred (RI) lines. Thus, to identify QTLs, users need provide only quantitative trait data from one of the supported populations. The WebQTL databases include both biological traits—neuroanatomical, pharmacological, and behavioral traits—and microarray-based gene expression data from BXD RI lines. A search function finds correlations between RNA expression and biological traits, and mapping functions find QTLs for either type of trait. The WebQTL service is available at

Index Entries

Genetics genetic map quantitative trait complex trait microarray transcriptome software web service 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, N. H. and Keightley, P. D. (2002) Understanding quantitative genetic variation. Nat. Rev. Genet. 3, 11–21.CrossRefGoogle Scholar
  2. Broman, K. W. (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab. Anim. (NY) 30, 44–52.Google Scholar
  3. Bystrykh, L., Weersing, E., Sutton, S., et al. (2003) Genetical genomics to identify gene pathways in hematopoietic stem cells. Submitted.Google Scholar
  4. Chesler, E. J., Wang, J., Lu, L., Qu, Y., Manly, K. F., and Williams, R. W. (2003) Genetic correlates of gene expression in recombinant inbred strains: A relational model system to explore neurobehavioral phenotypes. Neuroinformatics 1, 343–358.CrossRefGoogle Scholar
  5. Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.Google Scholar
  6. Darvasi, A. and Soller, M. (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207.Google Scholar
  7. Doerge, R. W. (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3, 43–52.CrossRefGoogle Scholar
  8. Haley, C. S. and Knott, S. A. (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324.Google Scholar
  9. Haley, C. S., Knott, S. A., and Elsen, J.-M. (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136, 1195–1207.Google Scholar
  10. Kent, W. J., Sugnet, C. W., Furey, T. S., et al. (2002) The human genome browser at UCSC. Genome Res. 12, 996–1006.CrossRefGoogle Scholar
  11. Knott, S. A., Elsen, J.-M., and Haley, C. S. (1996) Methods for multiple marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93, 7180.Google Scholar
  12. Lai, K., Kaspar, B. K., Gage, F. H., and Schaffer, D. V. (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21–27.CrossRefGoogle Scholar
  13. Lander, E. and Kruglyak, L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241–247.CrossRefGoogle Scholar
  14. Lockhart, D. J., Dong, H., Byrne, M. C., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.CrossRefGoogle Scholar
  15. Mackay, T. F. C. (2001) The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339.CrossRefGoogle Scholar
  16. Manly, K. F., Wang, J., Shou, S., et al. (2002) QTL mapping with microarray expression data. In: 16th International Mouse Genome Conference, San Antonio, TX.Google Scholar
  17. Mott, R. and Flint, J. (2002) Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160, 1609–1618.Google Scholar
  18. Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C., and Flint, J. (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 97, 12649–12654.CrossRefGoogle Scholar
  19. Phillips, T. J. and Belknap, J. K. (2002) Complextrait genetics: emergence of multivariate strategies. Nat. Rev. Neurosci. 3, 478–485.Google Scholar
  20. Rosen, G. D., La Porte, N. T., Diechtiareff, B., et al. (2003) Informatics center for mouse genomics: The dissection of complex traits of the nervous system. Neuroinformatics 1, 327–342.CrossRefGoogle Scholar
  21. Seaton, G., Haley, C. S., Knott, S. A., Kearsey, M., and Visscher, P. M. (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18, 339–340.CrossRefGoogle Scholar
  22. Seaton, G. G., Kearsey, M. J., Snape, J. W., Haley, C. S., and Nudd, G. R. (1998) JAVA, A programming solution to multi-platform analysis using regression techniques. In: Plant & Animal Genome VI, San Diego, CA.Google Scholar
  23. Threadgill, D. W., Airey, D. C., Lu, L., Manly, K. F., and Williams, R. W. (2001) Recombinant inbred intercross (RIX) mapping: A new approach extending the power of existing mouse resources. In: 15th International Mouse Genome Conference, p. 50, Edinburgh, UK.Google Scholar
  24. Visscher, P. M., Thompson, R., and Haley, C. S. (1996) Confidence intervals in QTL mapping by boot-strapping. Genetics 143, 1013–1020.Google Scholar
  25. Williams, R. W., Gu, J., Qi, S., and Lu, L. (2001) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol. 2, research0046.0041–0046.0018.Google Scholar
  26. Williams, R. W., Manly, K. F., Shou, S., et al. (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. In 16th International Mouse Genome Conference, San Antonio, TX.Google Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Jintao Wang
    • 1
  • Robert W. Williams
    • 2
  • Kenneth F. Manly
    • 1
  1. 1.Department of Molecular & Cellular BiologyRoswell Park Cancer InstituteBuffalo
  2. 2.Department of Anatomy and Neurobiology, Center of Genomics and BioinformaticsUniversity of Tennessee Health Science CenterMemphis

Personalised recommendations