Neurocritical Care

, Volume 4, Issue 3, pp 199–205 | Cite as

Predictors of left ventricular regional wall motion abnormalities after subarachnoid hemorrhage

  • Avinash Kothavale
  • Nader M. Banki
  • Alexander Kopelnik
  • Sirisha Yarlagadda
  • Michael T. Lawton
  • Nerissa Ko
  • Wade S. Smith
  • Barbara Drew
  • Elyse Foster
  • Jonathan G. ZaroffEmail author
Original Article



Cardiac abnormalities that have been reported after subarachnoid hemorrhage (SAH) include the release of cardiac biomarkers, electrocardiographic changes, and left ventricular (LV) systolic dysfunction. The mechanisms of cardiac dysfunction after SAH remain controversial. The aim of this study was to determine the prevalence of LV regional wall motion abnormalities (RWMA) after SAH and to quantify the independent effects of specific demographic and clinical variables in predicting the development of RWMA.


Three hundred patients hospitalized with SAH were prospectively studied with serial echocardiography. The primary outcome measure was the presence of RWMA. The predictor variables included the admission Hunt & Hess grade, age, gender, cardiac risk factors, aneurysm location, plasma catecholamine levels, cardiac troponin I (cTi) level, heart rate (HR), blood pressure, and phenylephrine dose. Univariate and multivariate logistic regression was performed with adjustment for serial measurements, reporting olds ratios (OR) and 95% confidence intervals (CI).


In this study, 817 echocardiograms were analysed. RWMA were detected in 18% of those studied. The prevalence of RWMA in patients with Hunt & Hess grades 3–5 was 35%. Among patients with a peak cTi level grater than 1.0 μg/L, 65% had RWMA. Multivariate analysis demonstrated that high Hunt & Hess grade (OR 4.22 for grade 3–5 versus grade 1–2, p=0.046), a cTi level greater than 1.0 μg/L (OR 10.47, p=0.001), a history of prior cocaine or amphetamine use (OR 5.50, p=0.037), and higher HR (OR 1.34 per 10 bpm increase, p=0.024) were predictive of RWMA.


RWMA were frequent after SAH. High-grade SAH, an elevation in cTi levels, a history of prior stimulant drug use, and tachycardia are independent predictors of RWMA.

Key words

Central nervous system subarachnoid hemorrhage cerebrovascular disorders echocardiography regional wall motion abnormality left ventricle cardiac dysfunction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schievink WI. Intracranial aneurysms. N Engl J Med 1997; 336(1):28–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Burch GE, Meyers R, Abildskov JA. A new electrocardiographic pattern observed in cerebrovascular accidents. Circulation 1954; 9:719–723.PubMedGoogle Scholar
  3. 3.
    Rudehill A, Gordon E., Sundqvist K, Sylvén C, Wahlgren NG. A study of ECG abnormalities and myocardial specific enzymes in patients with subarachnoid haemorrhage. Acta Anaesth Scand 1982;26:344–350.PubMedGoogle Scholar
  4. 4.
    Brouwers P, Westenberg H., Van Gijn J. Noradrenaline concentrations and electrocardiographic abnormalities after aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1995; 58(5):614–617.PubMedGoogle Scholar
  5. 5.
    Mayer SA, LiMandri G., Sherman D, et al. Electrocardiographic markers of abnormal left ventricular wall motion in acute subarachnoid hemorrhage. J Neurosurg 1995;83(5):889–896.PubMedCrossRefGoogle Scholar
  6. 6.
    Fabinyi G, Hunt D, McKinley L. Myocardial creatine kinase isoenzyme in serum after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1977;40(8):818–820.PubMedGoogle Scholar
  7. 7.
    Kaste M, Somer H, Konttinen A. Heart type creatine kinase isoenzyme (CK MB) in acute cerebral disorders. Br Heart J 1978; 40:802–805.PubMedGoogle Scholar
  8. 8.
    Neil-Dwyer G, Cruickshank J, Stratton C, Beta-blockers, plasma total creatine kinase and creatine kinase myocardial isoenzyme, and the prognosis of subarachnoid hemorrhage. Surg Neurol 1986;25(2):163–168.PubMedCrossRefGoogle Scholar
  9. 9.
    Mayer S, Lin J, Homma S, et al. Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke 1999;30(4):780–786.PubMedGoogle Scholar
  10. 10.
    Doshi R, Neil-Dwyer G, Stott A Hypothalamic and myocardial lesions after subarachnoid hemorrhage. J Neurol Neurosurg Psychiatry 1977;40:821–826.PubMedGoogle Scholar
  11. 11.
    Sato K, Masuda T, Izumi T. Subarachnoid hemorrhage and myocardial damage clinical and experimental studies. Jpn Heart J 1999;40(6):683–701.PubMedCrossRefGoogle Scholar
  12. 12.
    Parekh N, Venkatesh B, Cross D, et al. Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol 2000;36(4):1328–1335.PubMedCrossRefGoogle Scholar
  13. 13.
    Davies KR, Gelb AW, Manninen PH, Boughner DR, Bisnaire D. Cardiac function in aneurysmal subarachnoid haemorrhage: a study of electrocardiographic and echocardiographic abnormalities. Br J Anaesth 1991;67(1):58–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH. Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr 2000;13(8):774–779.PubMedCrossRefGoogle Scholar
  15. 15.
    Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol 1994;24(3):636–640.PubMedCrossRefGoogle Scholar
  16. 16.
    Deibert E, Barzilai B, Braverman AC, et al. Clinical significance of elevated troponin I levels in patients with nontraumatic subarachnoid hemorrhage. J Neurosurg 2003;98(4):741–746.PubMedGoogle Scholar
  17. 17.
    Marion DW, Segal R, Thompson ME. Subarachnoid hemorrhage and the heart. Neurosurgery 1986;18(1):101–106.PubMedCrossRefGoogle Scholar
  18. 18.
    Mertes P, Carteaux J, Jaboin Y, et al. Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation 1994;57(3):371–377.PubMedCrossRefGoogle Scholar
  19. 19.
    Hachinski VC, Smith KE, Silver MD, Gibson CJ, Ciriello J. Acute myocardial and plasma catecholamine changes in experimental stroke. Stroke 1986;17(3):387–390.PubMedGoogle Scholar
  20. 20.
    Tung P, Kopelnik A, Banki N, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke 2004;35(2): 552–553.CrossRefGoogle Scholar
  21. 21.
    Schiller N, Shah P, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989;2(5):358–367.PubMedGoogle Scholar
  22. 22.
    Khush K, Kopelnik A, Tung P, et al. Age and aneurysm position predict patterns of left ventricular dysfunction after subarachnoid hemorrhage. J Am Soc Echocardiogr 2005;18(2): 168–174.PubMedCrossRefGoogle Scholar
  23. 23.
    Samuels MA. Neurogenic heart disease: a unifying hypothesis. Am J Cardiol 1987;60(18):15J-19J.PubMedCrossRefGoogle Scholar
  24. 24.
    Mittleman M, Mintzer D, Maclure M, Tofler G, Sherwood J, Muller J. Triggering of myocardial infarction by cocaine. Circulation 1999;99:2737–2741.PubMedGoogle Scholar
  25. 25.
    Perper J, Van Thiel D. Cardiovascular complications of cocaine abuse. Recent Dev Alcohol 1992;10:343–361.PubMedGoogle Scholar
  26. 26.
    Smith IS, Roizen MF, Cahalan MK, et al. Does anesthetic technique make a difference? Augmentation of systolic blood pressure during carotid endarterectomy: effects of phenylephrine versus light anesthesia and of isoflurane versus halothane on the incidence of myocardial ischemia. Anesthesiology 1988;69:846–853.PubMedCrossRefGoogle Scholar
  27. 27.
    Roos Y, de Haan R, Beenen L, Groen R, Albrecht K, Vermeulen M. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry 2000; 68(3):337–341.PubMedCrossRefGoogle Scholar
  28. 28.
    Findlay J, Deagle G. Causes of morbidity and mortality following intracranial aneurysm rupture. Can J Neurol Sci 1998;25(3): 209–215.PubMedGoogle Scholar
  29. 29.
    Schocken D, Arrieta M, Leaverton P, Ross E. Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol 1992;20(2):301–306.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Avinash Kothavale
    • 1
  • Nader M. Banki
    • 1
  • Alexander Kopelnik
    • 1
  • Sirisha Yarlagadda
    • 1
  • Michael T. Lawton
    • 2
  • Nerissa Ko
    • 3
  • Wade S. Smith
    • 3
  • Barbara Drew
    • 4
  • Elyse Foster
    • 1
  • Jonathan G. Zaroff
    • 1
    Email author
  1. 1.Division of CardiologyUCSF Medical CenterSan Francisco
  2. 2.Department of NeurologyUCSF Medical CenterSan Francisco
  3. 3.Department of NeurologyUCSF Medical CenterSan Francisco
  4. 4.Department of Physiological NursingUCSF Medical CenterSan Francisco

Personalised recommendations