Neurocritical Care

, Volume 2, Issue 3, pp 342–351 | Cite as

Magnesium neuroprotection is limited in humans with acute brain injury

  • J. Andrew McKee
  • Randall P. Brewer
  • Gary E. Macy
  • Cecil O. Borel
  • James D. Reynolds
  • David S. Warner
Review Article

Abstract

Based on the results of preclinical models, magnesium sulfate (MgSO4) has gained attention as a putative neuroprotective agent. The negative results of a large-scale, randomized clinical trial using MgSO4 in acute stroke have tempered the initial enthusiasm for a neuroprotective benefit of the ion. Additional, large-scale clinical trials in stroke and other forms of brain injury are underway. This article reviews the central nervous system (CNS) physiology of Mg++, disordered Mg++ homeostasis in acute brain injury, preclinical and preliminary clinical foundations of current clinical trials, and the data regarding the CNS bio-availability of MgSO4—an important requisite for neuroprotective therapy. Although human studies have confirmed that moderate hypermagnesemia is well-tolerated and feasible, only modest elevation of cerebrospinal fluid (CSF) [Mg++] occurs. This modest increment of CSF [Mg++] in brain-injured humans occurs in the range of 10 to 19%. However, experimental evidence has yet to establish whether this modest elevation is sufficient for neuroprotection. Because of the limited CNS passage of the ion, further experimental work is needed to define the neuroprotective threshold of [Mg++] in the injured brain.

Key Words

Magnesium sulfate neuroprotective agents cerebrospinal fluid subarachnoid hemorrhage brain ischemia traumatic brain injury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muir KW. New experimental and clinical data on the efficacy of pharmacological magnesium infusions in cerebral infarcts. Magnesium Res 1998;11:43–56.Google Scholar
  2. 2.
    van den Bergh WM, Albrecht KW, Berkelbach van der Sprenkel JW, Rinkel GJ. Magnesium therapy after aneurysmal subarachnoid haemorrhage a dose-finding study for long term treatment. Acta Neurochir (Wien) 2003;145:195–199.CrossRefGoogle Scholar
  3. 3.
    Veyna RS, Seyfried D, Burke DG, et al. Magnesium sulfate therapy after aneurysmal subarachnoid hemorrhage. J Neurosurg 2002;96:510–514.PubMedGoogle Scholar
  4. 4.
    Muir KW, Lees KR. Dose optimization of intravenous magnesium sulfate after acute stroke. Stroke 1998;29:918–923.PubMedGoogle Scholar
  5. 5.
    Investigators IMAGES. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke Trial): randomized controlled trial. Lancet 2004;363:439–445.CrossRefGoogle Scholar
  6. 6.
    Saver JL KC, Lear MC. Results of the Field Administration of Stroke Treatment-Magnesium (FAST-MAG) pilot trial: a study of prehospital neuroprotective therapy. Stroke 2002;33:353.Google Scholar
  7. 7.
    Oppelt WW, MacIntyre I, Rall DP. Magnesium exchange between blood and cerebrospinal fluid. Am J Physiol 1963;205:959–962.PubMedGoogle Scholar
  8. 8.
    Elin R. Magnesium metabolism in health and disease. Dis Mon 1988;34:165–218.Google Scholar
  9. 9.
    Neuwelt EA, Abbott NJ, Drewes L, et al. Cerebrovascular biology and the various neural barriers: challenges and future directions. Neurosurgery 1999;44:604–608.PubMedCrossRefGoogle Scholar
  10. 10.
    Pollay M. Transport mechanisms in the choroid plexus. Fed Proc 1974;44:2064–2069.Google Scholar
  11. 11.
    Chutkow JG. Metabolism of magnesium in the central nervous system. Neurology 1974;24:780–787.PubMedGoogle Scholar
  12. 12.
    Hallak M, Berman RF, Irtenkauf SM, Evans MI, Cotton DB. Peripheral magnesium sulfate enters the brain and increases the threshold for hippocampal seizures in rats. Am J Obstet Gynecol 1992;167:1605–1610.PubMedGoogle Scholar
  13. 13.
    Heath DL, Vink R. Optimization of magnesium therapy after severe diffuse axonal brain injury in rats. J Pharmacol Exp Ther 1999;288:1311–1316.PubMedGoogle Scholar
  14. 14.
    Feldman Z, Gurevitch B, Artru AA, et al. Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 1996;85:131–137.PubMedGoogle Scholar
  15. 15.
    Altura BT, Memon ZI, Zhang A, et al. Low levels of serum ionized magnesium are found in patients early after stroke which result in rapid elevation in cytosolic free calcium and spasm in cerebral vascular muscle cells. Neurosci Lett 1997;230:37–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Memon ZI AB, Benjamin JL, Cracco RQ, Altura BM. Predictive value of serum ionized but not total magnesium levels in head injuries. Scand J Clin Lab Invest 1995;55:671–677.PubMedCrossRefGoogle Scholar
  17. 17.
    van den Bergh WM, Algra A, van der Sprenkel JW, Tulleken CA, Rinkel GJ. Hypomagnesemia after aneurysmal subarachnoid hemorrhage. Neurosurgery 2003;52:276–281.PubMedCrossRefGoogle Scholar
  18. 18.
    Miura K. Changes in Mg++ concentration of CSF after subarachnoid hemorrhage and Mg++—effects on the contractions of bovine cerebral artery. Neurol Med Chir (Tokyo) 1988;16:1251–1259.Google Scholar
  19. 19.
    Kahraman SO, T. Kayali, H. Atabey, C. Kutluay, T. Timurkaynak, E. Monitoring of serum ionized magnesium in neurosurgical intensive care unit: preliminary results. Clin Chim Acta 2003;334:211–215.PubMedCrossRefGoogle Scholar
  20. 20.
    Polderman KH, van Zanten AR, Girbes AR. The importance of magnesium in critically ill patients: a role in mitigating neurological injury and in the prevention of vasospasms. Intensive Care Med 2003;29:1202–1203.PubMedCrossRefGoogle Scholar
  21. 21.
    Lampl Y, Geva D, Dilad, R, Eshel, Y, Ronen, L, Sarova-Pinhas I. Cerebrospinal fluid magnesium level as a prognostic factor in ischaemic stroke. J Neurol 1998;245:584–588.PubMedCrossRefGoogle Scholar
  22. 22.
    Amighi J, Sabeti S, Schlager O, et al. Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke 2004;35:22–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin JY, Chung SY, Lin MC, Cheng FC. Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sci 2002;71:803–811.PubMedCrossRefGoogle Scholar
  24. 24.
    Heath DL, Vink R. Neuroprotective effects of MgSO4 and MgCl2 in closed head injury: a comparative phosphorus NMR study. J Neurotraum 1998;15:183–189.Google Scholar
  25. 25.
    Schanne FA, Gupta RK, Stanton PK. 31P-NMR study of transient ischemia in rat hippocampal slices in vitro. Biochim Biophys Acta 1993;1158:257–263.PubMedGoogle Scholar
  26. 26.
    Hoffman DJ, Marro PJ, McGowan JE, Mishra OP, Delivoria-Papadopoulos M. Protective effect of MgSO4 infusion on NMDA receptor binding characteristics during cerebral cortical hypoxia in the newborn piglet. Brain Res 1994;644:144–149.PubMedCrossRefGoogle Scholar
  27. 27.
    Vink R OCC, Nimmo AJ, Heath DL. Magnesium attenuates persistent functional deficits following diffuse traumatic brain injury in rats. Neurosci Lett 2003;336:441–444.CrossRefGoogle Scholar
  28. 28.
    McIntosh TK, Vink R, Yamakami I, Faden AI. Magnesium protects against neurological deficit after brain injury. Brain Res 1989;482:252–260.PubMedCrossRefGoogle Scholar
  29. 29.
    Tsuda T, Kogure K, Nishioka K, Watanabe T. Mg2+ administered up to twenty-four hours following reperfusion prevents ischemic damage of the Ca1 neurons in the rat hippocampus. Neuroscience 1991;44:335–341.PubMedCrossRefGoogle Scholar
  30. 30.
    Ram Z, Sadeh M, Shacked I, Sahar A, Hadani M. Magnesium sulfate reverses experimental delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke 1991;22:922–927.PubMedGoogle Scholar
  31. 31.
    Pyne GJ, Cadoux-Hudson TA, Clark JF. Magnesium protection against in vitro cerebral vasospasm after subarachnoid haemorrhage. Br J Neurosurg 2001;15:409–415.PubMedCrossRefGoogle Scholar
  32. 32.
    Kemp P, Gardiner SM, Bennett T, Rubin PC. Magnesium sulphate reverses the carotid vasoconstriction caused by endothelin-1, angiotensin II and neuropeptide-Y, but not that caused by NG-nitro-arginine methyl ester, in conscious rats. Clin Sci 1993;85:175–181.PubMedGoogle Scholar
  33. 33.
    Huang QF, Gebrewold A, Zhang A, Altura BT, Altura BM. Role of excitatory amino acids in regulation of rat pial microvasculature. Am J Physiol 1994;266:R158–163.PubMedGoogle Scholar
  34. 34.
    van den Bergh WM, Zuur JK, Kamerling NA, et al. Role of magnesium in the reduction of ischemic depolarization and lesion volume after experimental subarachnoid hemorrhage. J Neurosurg 2002;97:416–422.PubMedCrossRefGoogle Scholar
  35. 35.
    Chi OZ, Pollak P, Weiss HR. Effects of magnesium sulfate and nifedipine on regional cerebral blood flow during middle cerebral artery ligation in the rat. Arch Int Pharmacodyn Ther 1990;304:196–205.PubMedGoogle Scholar
  36. 36.
    Izumi Y, Roussel S, Pinard E, Seylaz J. Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1991;11:1025–1030.PubMedGoogle Scholar
  37. 37.
    Yang Y, Li Q, Ahmad F, Shuaib A. Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat. Neurosci Lett 2000;285:119–122.PubMedCrossRefGoogle Scholar
  38. 38.
    Saver JL KC, Eckstein M, Starkman S; FAST-MAG Pilot Trial Investigators. Prehospital neuroprotective therapy for acute stroke: results of the Field Administration of Stroke Therapy (FAST-MAG) pilot trial. Stroke 2004;35:e106-e108.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhu HD MR, Meloni B, Oltvolgyi C, Moore S, Majda B. Magnesium sulfate fails to reduce infarct volume following transient focal ischemia in rats. Neurosci Res 2004;49:347–353.PubMedCrossRefGoogle Scholar
  40. 40.
    Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, Harbaugh RE. Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg 1996;85:117–124.PubMedCrossRefGoogle Scholar
  41. 41.
    Greene MF. Magnesium sulfate for preeclampsia. N Engl J Med 2003;348:275–276.PubMedCrossRefGoogle Scholar
  42. 42.
    Lucas MJ, Leveno KJ, Cunningham, FG. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 1995;333:201–205.PubMedCrossRefGoogle Scholar
  43. 43.
    Belfort MA, Anthony J, Saade GR, Allen JC Jr., Nimodipine Study Group. A comparison of magnesium sulfate and nimodipine for the prevention of eclampsia. N Engl J Med 2003;348:304–311.PubMedCrossRefGoogle Scholar
  44. 44.
    Belfort MA, Moise KJ Jr. Effect of magnesium sulfate on maternal brain blood flow in preeclampsia: a randomized, placebo-controlled study. Am J Obstet Gynecol 1992;167:661–666.PubMedGoogle Scholar
  45. 45.
    Muir KW, Lees KR. A randomized, double-blind, placebo-controlled pilot trial of intravenous magnesium sulfate in acute stroke. Stroke 1995;26:1183–1188.PubMedGoogle Scholar
  46. 46.
    Lampl Y, Gilad R, Geva D, Eshel Y, Sadeh M. Intravenous administration of magnesium sulfate in acute stroke: a randomized double-blind study. Clin Neuropharmacol 2001;24:11–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Boet R, Mee E. Magnesium sulfate in the management of patients with Fisher Grade 3 subarachnoid hemorrhage: a pilot study. Neurosurgery 2000;47:602–606.PubMedCrossRefGoogle Scholar
  48. 48.
    Brewer RP, Parra A, Lynch J, Chilukuri V, Borel CO. Cerebral blood flow velocity response to magnesium sulfate in patients after subarachnoid hemorrhage. J Neurosurg Anesthesiol 2001;13:202–206.PubMedCrossRefGoogle Scholar
  49. 48a.
    van den Bergh WM, Algra A, van Kooten F, et al. Magnesium Sulfate in aneurysmal subarachnoid hemorrhage: a randomized trial. Stroke 2005;36:1011–1015.PubMedCrossRefGoogle Scholar
  50. 49.
    Canavero S BV, Narcisi P. Safety of magnesium-lidocaine combination for severe head injury: the Turin liodomag pilot study. Surg Neurol 2003;60:165–169.PubMedCrossRefGoogle Scholar
  51. 50.
    Choi WW, Warner DS, Monahan DJ, Todd MM. Effects of acute hypermagnesemia on the threshold for lidocaine-induced seizures in the rat. Am J Obstet Gynecol 1991;164:693–697.PubMedGoogle Scholar
  52. 51.
    Cohen H The magnesium content of the cerebro-spinal fluid and other body fluids. Q J Med 1927;20:173–186.Google Scholar
  53. 52.
    Somjen G, Hilmy M, Stephen CR. Failure to anesthetize human subjects by intravenous administration of magnesium sulfate. J Pharmacol Exp Ther 1966;154:652–659.PubMedGoogle Scholar
  54. 53.
    Ko SH, Lim HR, Kim DC, Han YJ, Choe H, Song HS. Magnesium sulfate does not reduce postoperative analgesic requirements. Anesthesiology 2001;95:640–646.PubMedCrossRefGoogle Scholar
  55. 54.
    Thurnau GR, Kemp DB, Jarvis A. Cerebrospinal fluid levels of magnesium in patients with preeclampsia after treatment with intravenous magnesium sulfate: a preliminary report. Am J Obstet Gynecol 1987;157:1435–1438.PubMedGoogle Scholar
  56. 55.
    Fuchs-Buder T, Tramer MR, Tassonyi E. Cerebrospinal fluid passage of intravenous magnesium sulfate in neurosurgical patients. J Neurosurg Anesthesiol 1997;9:324–328.PubMedCrossRefGoogle Scholar
  57. 56.
    Brewer RP, Parra A, Borel CO, Hopkins MB, Reynolds JD. Intravenous magnesium sulfate does not increase ventricular CSF ionized magnesium concentration of patients with intracranial hypertension. Clin Neuropharmacol 2001;24:341–345.PubMedCrossRefGoogle Scholar
  58. 57.
    McKee JA, Brewer RP, Macy GE, et al. Analysis of the brain bioavailability of peripherally administered MgSO4: a study in humans with acute brain injury undergoing prolonged induced hypermagnesemia. Crit Care Med 2005;33:661–666.PubMedCrossRefGoogle Scholar
  59. 58.
    Germano A, d’Avella D, Cicciarello R, Hayes RL, Tomasello F. Blood-brain barrier permeability changes after experimental subarachnoid hemorrhage. Neurosurgery 1992;30:882–886.PubMedCrossRefGoogle Scholar
  60. 59.
    Albayrak S, Zhao Q, Siesjo BK, Smith ML. Effect of transient focal ischemia on blood-brain barrier permeability in the rat: correlation to cell injury. Acta Neuropathol (Berl) 1997;94: 158–163.CrossRefGoogle Scholar
  61. 60.
    Menzies SA, Hoff JT, Betz AL. Extravasation of albumin in ischaemic brain oedema. Acta Neurochir (Wien) 1990;51:220–222.Google Scholar
  62. 61.
    Sickmann A. Identification of proteins from human cerebrospinal fluid, separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 2000;21:2721–2728.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • J. Andrew McKee
    • 2
  • Randall P. Brewer
    • 1
    • 2
  • Gary E. Macy
    • 1
  • Cecil O. Borel
    • 1
    • 2
  • James D. Reynolds
    • 2
  • David S. Warner
    • 2
  1. 1.Neurosciences Intensive Care UnitDuke University School of Medicine, Duke University Medical CenterDurham
  2. 2.Department of AnesthesiologyDuke University School of Medicine, Duke University Medical CenterDurham
  3. 3.c/o Laraine TuckDuke University Medical CenterDurham

Personalised recommendations