Neurocritical Care

, Volume 2, Issue 3, pp 282–287 | Cite as

Effect of bacterial meningitis complicating severe head trauma upon brain microdialysis and cerebral perfusion

Practical Pearl


Introduction: This article describes changes in regional cerebral perfusion and brain metabolism in a case of bacterial meningitis complicating severe traumatic brain injury.

Case report: As part of clinical monitoring of patients with severe head injury, cerebral microdialysis was performed and extracellular concentration of glucose, lactate, glutamate, and pyruvate was determined. A thermal diffusion probe was used for bedside monitoring of cerebral blood flow. A cinetobacter meningitis complicated the clinical course on the seventh post-admission day and dramatically altered the neurochemistry. Microdialy sate analysis showed glucose under the detection limit, lactate at moderately high levels, and a marked increase in glutamate and pyruvate levels. A reduction of cerebral perfusion was detected in the early phase of meningitis, probably secondary to vascular complications related to the inflammatory process.

Discussion: This case describes an emerging area of study and practice in patients with brain injury. It demonstrates how cerebral perfusion monitoring and study of brain metabolism can provide an early detection of secondary events that complicate severe head injury and can contribute to a better understanding of the complex pathogenetic mechanisms responsible for neuronal damage.

Key Words

Meningitis traumatic brain injury microdialysis cerebral blood flow pyruvate glutamate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baltas I, Tsoulfa S, Sakellariou P, Vogas V, Fylaktakis M, Kondodimou A. Posttraumatic meningitis: bacteriology, hydrocephalus, and outcome. Neurosurgery 1994;35:422–426.PubMedCrossRefGoogle Scholar
  2. 2.
    Matschke J, Tsokos M. Post-traumatic meningitis: histomorphological findings, postmortem microbiology and forensic implications. Forensic Sci Int 2001;115:199–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Merkelbach S, Müller M, Huber G, Schimrigk K. Alteration of cerebral blood flow in patients with bacterial and viral meningoencephalitis. Am J Neuroradiol 1998;19:433–438.PubMedGoogle Scholar
  4. 4.
    Móller K, Larsen F, Qvist J, et al. Dependency of cerebral blood flow on mean arterial pressure in patients with acute bacterial meningitis. Crit Care Med 2000;28:1027–1032.PubMedCrossRefGoogle Scholar
  5. 5.
    Móller K, Strauss GI, Thomsen G, et al. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis. Acta Anaesthesiol Scand 2002;46:567–578.PubMedCrossRefGoogle Scholar
  6. 6.
    Tunkel AR, Scheld WM. Pathogenesis and pathophysiology of bacterial meningitis. Clin Microbiol Rev 1993;6:118–136.PubMedGoogle Scholar
  7. 7.
    Móller K, Skinhój P, Knudsen GM, Larsen FS. Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis. Stroke 2000;31:1116–1122.PubMedGoogle Scholar
  8. 8.
    Tureen JH, Dworkin RJ, Kennedy SL, Sachdeva M, Sande MA. Loss of cerebral autoregulation in experimental meningitis in rabbits. J Clin Invest 1990;85:577–581.PubMedGoogle Scholar
  9. 9.
    Ries S, Schminke U, Fassbender K, Daffertshofer M, Steinke W, Hennerici M. Cerebrovascular involvement in the acute phase of bacterial meningitis. J Neurol 1997;244:51–55.PubMedCrossRefGoogle Scholar
  10. 10.
    Koedel U, Lorenzl S, Gorriz C, Arendt R, Pfister HW. Endothelin B receptors-mediated increase of cerebral blood flow in experimental pneumococcal meningitis. J Cereb Blood Flow Metab 1998;18:67–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Guerra-Romero L, Täuber MG, Fournier MA, Tureen JH. Lactate and glucose concentrations in brain interstitial fluid, cerebrospinal fluid, and serum during experimental pneumococcal meningitis. J Infect Dis 1992;166:546–550.PubMedGoogle Scholar
  12. 12.
    Guerra-Romero L, Tureen JH, Fournier MA, Makrides V, Täuber MG. Aminoacids in cerebrospinal and brain interstitial fluid in experimental pneumococcal meningitis. Pediatr Res 1993;33:510–513.PubMedCrossRefGoogle Scholar
  13. 13.
    Perry VL, Young RSK, Aquila WJ, During MJ. Effect of experimental Escherichia coli meningitis on concentrations of excitatory and inhibitory amino acids in the rabbit brain: in vivo microdialysis study. Pediatr Res 1993;34:187–191.PubMedCrossRefGoogle Scholar
  14. 14.
    Leib SL, Boscacci R, Gratzl O, Zimmerli W. Predictive value of cerebrospinal fluid (CSF) lactate level versus CSF/blood glucose ratio for the diagnosis of bacterial meningitis following neurosurgery. Clin Infect Dis 1999;29:69–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Jennett B, Teasdale G. Open injuries. In: Jennett B, Teasdale G, eds. Management of Head Injuries. Philadelphia: F.A. Davis Company, 1981, pp. 193–210.Google Scholar
  16. 16.
    Tunkel AR, Scheld WM. Acute infectious complications of head trauma. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology: Head Injury. Vol. 13. Amsterdam: Elsevier Science Publishers B.V., 1990, pp. 317–326.Google Scholar
  17. 17.
    Nau R, Brück W. Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 2002;25:38–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Gliemroth J, Bahlmann L, Klaus S, Klöhn A, Arnold H. Long-time microdialysis in a patient with meningoencephalitis. Clin Neurol Neurosurg 2002;105:27–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2000;93:808–814.PubMedCrossRefGoogle Scholar
  20. 20.
    Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 2003;23:865–877.PubMedCrossRefGoogle Scholar
  21. 21.
    Stahl N, Mellergard P, Hallstrom A, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 2001;45:977–985.PubMedCrossRefGoogle Scholar
  22. 22.
    Hausler KG, Prinz M, Nolte C, et al. Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur J Neurosci 2002;16:2113–2122.PubMedCrossRefGoogle Scholar
  23. 23.
    Kielian T. Microglia and chemokines in infectious diseases of the nervous system: views and reviews. Front Biosci 2004;9:732–750.PubMedCrossRefGoogle Scholar
  24. 24.
    Alves O, Doyle AJ, Clausen T, Gilman C, Bullock R. Evaluation of topiramate neuroprotective effect in severe TBI using microdialysis. Ann NY Acad Sci 2003;993:25–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Schmitt B, Wohlrab G, Steinlin M, Fanconi S, Nadal D, Boltshauser E. Treatment with the N-methyl-d-aspartate receptor antagonist dextromethorphan in severe bacterial meningitis: preliminary results. Eur J Pediatr 1998;157:863–868.PubMedCrossRefGoogle Scholar
  26. 26.
    Holloway KL, Barnes T, Choi S, et al. Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients. J Neurosurg 1996;85:419–424.PubMedCrossRefGoogle Scholar
  27. 27.
    Lozier AP, Sciacca RR, Romagnoli MF, Sander Connolly E. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 2002;51:170–182.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Division of Anesthesia and Intensive Care, Department of Neuroscience, Psychiatric, and Anesthesiological SciencesUniversity of MessinaMessinaItaly
  2. 2.Department of NeurosurgeryMedical College of VirginiaRichmond

Personalised recommendations