NanoBiotechnology

, Volume 1, Issue 2, pp 201–210 | Cite as

Polyvalent interactions of HIV-gp120 protein and nanostructures of carbohydrate ligands

  • Jing-Jiang Yu
  • Birte Nolting
  • Yih Horng Tan
  • Xue L
  • Jacqelyn Grvay-Hague
  • Gang-yu Lu
Original Article

Abstract

This paper presents the initial effort in anti-HIV infection using glycosphingolipid-based nanostructures. HIV infection of CD4 negative cells is initiated by the binding of the viral envelope glycoprotein gp120 to galactosylceramide (GalCer), a glycosphingolipid that serves as the cellular receptor for viral recognition. A series of nanostructures of GalCer are designed and produced using an AFM-based lithography method known as nanografting. The geometry dependence of recombinant gp120 binding to these nanostructures is monitored using high-resolution AFM imaging. Gp120 molecules are found to favor binding sites that allow for polyvalent interactions. Increased adsorption at the intersection of two lines, or between two parallel lines with matching separation for trimeric binding, strongly suggests that trivalent interactions are dominant in gp120-GalCer nanostructure interactions. Systematic distance-dependence studies, using parallel nanolines with various separations, reveal a separation of 4.8 nm, matching the separation of V3 loops in gp120 trimers. This investigation demonstrates that nanotechnology provides a powerful tool for investigating and guiding polyvalent interactions among biological systems.

Key Words

HIV-1 envelope protein gp120 self-assembled monolayers atomic force microscopy nanofabrication polyvalent interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yahi, N., Baghdiguian, S., Moreau, H., and Fantini, J. (1992), J. Virology 66, 4848–4854.Google Scholar
  2. 2.
    Harouse, J. M., Kunsch, C., Hartle, H. T., et al. (1989), J. Virology 63, 2527–2533.Google Scholar
  3. 3.
    Harouse, J. M., Bhat, S., Spitalnik, S. L., et al. (1991), Science 253, 320–323.CrossRefGoogle Scholar
  4. 4.
    McAlarney, T., Apostolski, S., Lederman, S., and Latov, N. (1994), J. Neurosci. Res. 37, 453–460.CrossRefGoogle Scholar
  5. 5.
    Brogi, A., Presentini, R., Solazzo, D., Piomboni, P., and Constantino-Ceccarini, E. (1996), Aids Res. Hum. Retroviruses 12, 483–489.Google Scholar
  6. 6.
    Brogi, A., Presentini, R., Piomboni, P., et al. (1995), J. Submicrosc. Cytol. Pathol. 27, 565–571.Google Scholar
  7. 7.
    Bhat, S., Spitalnik, S. L., Gonzalezscarano, F., and Silberberg, D. H. (1991), Proc. Natl. Acad. Sci. USA 88, 7131–7134.CrossRefGoogle Scholar
  8. 8.
    Earl, P. L., Doms, R. W., and Moss, B. (1990), Proc. Natl. Acad. Sci. USA 87, 648–652.CrossRefGoogle Scholar
  9. 9.
    Center, R. J., Leapman, R. D., Lebowitz, J., Arthur, L. O., Earl, P. L., and Moss, B. (2002), J. Virology 76, 7863–7867.CrossRefGoogle Scholar
  10. 10.
    Wyatt, R., Kwong, P. D., Desjardins, E., et al. (1998), Nature 393, 705–711.CrossRefGoogle Scholar
  11. 11.
    McReynolds, K. D., Hadd, M. J., and Gervay-Hague, J. (1999), Bioconjug. Chem. 10, 1021–1031.CrossRefGoogle Scholar
  12. 12.
    Nolting, B., Yu, J. J., Liu, G. Y., Cho, S. J., Kauzlarich, S., and Gervay-Hague, J. (2003), Langmuir 19, 6465–6473.CrossRefGoogle Scholar
  13. 13.
    Nuzzo, R. G. and Allara, D. L. (1983), J. Am. Chem. Soc. 105, 4481–4483.CrossRefGoogle Scholar
  14. 14.
    Nuzzo, R. G., Fusco, F. A., and Allara, D. L. (1987), J. Am. Chem. Soc. 109, 2358–2368.CrossRefGoogle Scholar
  15. 15.
    Hegner, M., Wagner, P., and Semenza, G. (1993), Surf. Sci. 291, 39–46.CrossRefGoogle Scholar
  16. 16.
    Wagner, P., Hegner, M., Guntherodt, H. J., and Semenza, G. (1995), Langmuir 11, 3867–3875.CrossRefGoogle Scholar
  17. 17.
    Chidsey, C. E. D., Loiacono, D. N., Sleator, T., and Nakahara, S. (1988), Surf. Sci. 200, 45–66.CrossRefGoogle Scholar
  18. 18.
    Woll, C., Chiang, S., Wilson, R. J., and Lippel, P. H. (1989), Phys. Rev. B 39, 7988–7991.CrossRefGoogle Scholar
  19. 19.
    Lang, C. A., Dovek, M. M., Nogami, J., and Quate, C. F. (1989), Surf. Sci. 224, L947-L955.CrossRefGoogle Scholar
  20. 20.
    Poirier, G. E. and Pylant, E. D. (1996), Science 272, 1145–1148.CrossRefGoogle Scholar
  21. 21.
    Poirier, G. E. (1997), Chem. Rev. 97, 1117–1127.CrossRefGoogle Scholar
  22. 22.
    Qian, Y. L., Yang, G. H., Yu, J. J., Jung, T. A., and Liu, G. Y. (2003), Langmuir 19, 6056–6065.CrossRefGoogle Scholar
  23. 23.
    Xu, S. and Liu, G. Y. (1997), Langmuir 13, 127–129.CrossRefGoogle Scholar
  24. 24.
    Xu, S. and Liu, G. Y. (1999), Scanning 21, 71–71.Google Scholar
  25. 25.
    Xu, S., Miller, S., Laibinis, P. E., and Liu, G. Y. (1999), Langmuir 15, 7244–7251.CrossRefGoogle Scholar
  26. 26.
    Liu, G. Y., Xu, S., and Qian, Y. L. (2000), Acc. Chem. Res. 33, 457–466.CrossRefGoogle Scholar
  27. 27.
    Amro, N. A., Xu, S., and Liu, G. Y. (2000), Langmuir 16, 3006–3009.CrossRefGoogle Scholar
  28. 28.
    Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W. A. (1998), Nature 393, 648–659.CrossRefGoogle Scholar
  29. 29.
    Starcich, B. R., Hahn, B. H., Shaw, G. M., et al. (1986), Cell 45, 637–648.CrossRefGoogle Scholar
  30. 30.
    Leonard, C. K., Spellman, M. W., Riddle, L., Harris, R. J., Thomas, J. N., and Gregory, T. J. (1990), J. Biol. Chem. 265, 10,373–10,382.Google Scholar
  31. 31.
    Cook, D. G., Fantini, J., Spitalnik, S. L., and Gonzalezscarano, F. (1994), Virology 201, 206–214.CrossRefGoogle Scholar
  32. 32.
    Fantini, J., Hammache, D., Delezay, O., et al. (1997), J. Biol. Chem. 272, 7245–7252.CrossRefGoogle Scholar
  33. 33.
    Gelderblom, H. R., Hausmann, E. H. S., Ozel, M., Pauli, G., and Koch, M. A. (1987), Virology 156, 171–176.CrossRefGoogle Scholar
  34. 34.
    Ozel, M., Pauli, G., and Gelderblom, H. R. (1988), Arch. Virology 100, 255–266.CrossRefGoogle Scholar
  35. 35.
    Nermut, M. V., Grief, C., Hashmi, S., and Hockley, D. J. (1993), Aids Res. Hum. Retroviruses 9, 929–938.CrossRefGoogle Scholar
  36. 36.
    Kuznetsov, Y. G., Victoria, J. G., Robinson, W. E., and McPherson, A. (2003), J. Virology 77, 11,896–11,909.Google Scholar
  37. 37.
    Allen, M. J., Hud, N. V., Balooch, M., Tench, R. J., Siekhaus, W. J., and Balhorn, R. (1992), Ultramicroscopy 42, 1095–1100.CrossRefGoogle Scholar
  38. 38.
    Markiewicz, P. and Goh, M. C. (1995), J. Vacuum Sci. Tech. B 13, 1115–1118.CrossRefGoogle Scholar
  39. 39.
    Xu, S., Amro, N. A., and Liu, G. Y. (2001), Appl. Surf. Sci. 175, 649–655.CrossRefGoogle Scholar
  40. 40.
    Wadu-Mesthrige, K., Amro, N. A., Garno, J. C., Xu, S., and Liu, G. Y. (2001), Biophysi. J. 80, 1891–1899.Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Jing-Jiang Yu
    • 1
  • Birte Nolting
    • 1
  • Yih Horng Tan
    • 1
  • Xue L
    • 1
  • Jacqelyn Grvay-Hague
    • 1
  • Gang-yu Lu
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavis

Personalised recommendations