, Volume 1, Issue 2, pp 191–199 | Cite as

A designed glycopeptide array for characterization of sugar-binding proteins toward a glycopeptide chip technology

  • Kenj Usui
  • Tetsunori Jong
  • Kin-ya Toioki
  • Hisakan MiharaEmail author
Original Article


For the realization of a practical high-throughput protein detection and analysis system, a novel peptide array has been constructed using a designed glycopeptide model library with an α-helical secondary structure. This study will contribute the increment of the diversity of such an array system and the application to focused proteomics and ligand screening by effective detection of sugar-binding proteins. Fluorescent glycopeptides with an α-helix, a β-strand, or a loop structure were designed initially to select a suitable scaffold for the detection of a model protein. After selection of the α-helical structure as the best scaffold, a small model library with various saccharides was constructed to have charge and hydrophobicity variations in the peptide sequences. When various sugar-binding proteins were added to the peptide library array, the fluorescent peptides showed different responses in fluorescence intensities depending on their sequences as well as saccharides. The patterns of these responses could be regarded as “protein fingerprints” (PFPs), which are able to establish the identities of the target proteins. The resulting PFPs reflected the recognition properties of the proteins. Furthermore, statistical data analysis from obtained PFPs was performed using a cluster analysis. The PFPs of sugar-binding proteins were clustered successfully depending on their families and binding properties. These studies demonstrate that arrays with glycopeptide libraries based on designed structures can be promising tools to detect and analyze the target proteins. Designed peptides with functional groups such as sugars will play roles as the capturing agents of high-throughput protein nano/micro arrays for focused proteomics and ligand screening studies.

Key Words

Focused proteome glycosidase α-helix lectin microarray peptide protein chip sugar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niemeyer, C. M. and Blohm, D. (1999), Angew. Chem. Int. Ed. 38, 2865–2869; Angew. Chem. 111, 3039–3043.CrossRefGoogle Scholar
  2. 2.
    DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997), Science 278, 680–686.CrossRefGoogle Scholar
  3. 3.
    Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999), Mol. Cell. Biol. 19, 1720–1730.Google Scholar
  4. 4.
    Anderson, N. L. and Anderson, N. G. (1998), Electrophoresis 19, 1853–1861.CrossRefGoogle Scholar
  5. 5.
    Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., et al. (1996), Proc. Natl. Acad. Sci. USA 93, 14,440–14,445.CrossRefGoogle Scholar
  6. 6.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999), Nat. Biotech. 17, 994–999.CrossRefGoogle Scholar
  7. 7.
    Natsume, T., Nakayama, H., and Isobe, T. (2001), Trends Biotech. 19 (Suppl.), S28-S33.CrossRefGoogle Scholar
  8. 8.
    Tomizaki, K., Usui, K., and Mihara, H. (2005), ChemBioChem 6, 782–799.CrossRefGoogle Scholar
  9. 9.
    MacBeath, G. and Schreiber, S. L. (2000), Science 289, 1760–1763.Google Scholar
  10. 10.
    Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A. (2000), Anal. Biochem. 278, 123–131.CrossRefGoogle Scholar
  11. 11.
    Zhu, H. and Snyder, M. (2001), Curr. Opin. Chem. Biol. 5, 40–45.CrossRefGoogle Scholar
  12. 12.
    Zhu, H., Bilgin, M., Bangham, R., et al. (2001), Science 293, 2101–2105.CrossRefGoogle Scholar
  13. 13.
    Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vöhringer, C. F., and Joos, T. O. (2002), Trends Biotech. 20, 160–166.CrossRefGoogle Scholar
  14. 14.
    Mitchell, P. (2002), Nat. Biotech. 20, 225–229.CrossRefGoogle Scholar
  15. 15.
    Wilson, D. S. and Nock, S. (2003), Angew. Chem. Int. Ed. 42, 494–500; Angew. Chem. 115, 510–517.CrossRefGoogle Scholar
  16. 16.
    Kambhampati, D. (2003), Protein Microarray Technology, Wiley-VCH, Weinheim.Google Scholar
  17. 17.
    Fung, E. T. (ed.) (2004), Protein Arrays: Methods and Protocols; Humana Press, Totowa, New Jersey.Google Scholar
  18. 18.
    Zhang, H., Li, X., Martin, D. B., and Aebersold, R. (2003), Nat. Biotech. 21, 660–666.CrossRefGoogle Scholar
  19. 19.
    Murray, J., Marusich, M. F., Capaldi, R. A., and Aggeler, R. (2004), Electrophoresis 25, 2520–2525.CrossRefGoogle Scholar
  20. 20.
    Takahashi, M., Nokihara, K., and Mihara, H. (2003), Chem. Biol. 10, 53–60.CrossRefGoogle Scholar
  21. 21.
    Usui, K., Takahashi, M., Nokihara, K., and Mihara, H. (2004), Molecular Diversity 8, 209–218.CrossRefGoogle Scholar
  22. 22.
    Usui, K., Ojima, T., Takahashi, M., Nokihara, K., and Mihara, H. (2004), Biopolymers 76, 129–139.CrossRefGoogle Scholar
  23. 23.
    Houseman, B. T. and Mrksich, M. (2002), Chem. Biol. 9, 443–454.CrossRefGoogle Scholar
  24. 24.
    Park, S., Lee, M., Pyo, S.-J., and Shin, I. (2004), J. Am. Chem. Soc. 126, 4812–4819.CrossRefGoogle Scholar
  25. 25.
    Ratner, D. M., Adams, E. W., Su, J., O’Keefe, B. R., Mrksich, M., and Seeberger, P. H. (2004), ChemBioChem 5, 379–383.CrossRefGoogle Scholar
  26. 26.
    Chan, W. C. and White, P. D. (2000), Fmoc Solid Phase Peptide Synthesis: a Practical Approach, Oxford University Press, New York.Google Scholar
  27. 27.
    Meinjohanns, E., Meldal, M., Paulsen, H., Dwek, R. A., and Bock, K. (1998), J. Chem. Soc. Perkin Trans. 1, 549–560.CrossRefGoogle Scholar
  28. 28.
    Vetter, D. and Gallop, M. A. (1995), Bioconjugate Chem. 6, 316–318.CrossRefGoogle Scholar
  29. 29.
    Wahler, D., Badalassi, F., Crotti, P., and Reymond, J. L. (2002). Chem. Eur. J. 8, 3211–3228.CrossRefGoogle Scholar
  30. 30.
    Goddard, J. P. and Reymond, J. L. (2004), J. Am. Chem. Soc. 126, 11,116, 11,117.CrossRefGoogle Scholar
  31. 31.
    Grognux, J. and Reymond, J. L. (2004), ChemBioChem 5, 826–831.CrossRefGoogle Scholar
  32. 32. (Japanese).Google Scholar
  33. 33.
    Muraki, M., Ishimura, M., and Harata, K. (2002), Biochem. Biophys. Acta 1569, 10–20.Google Scholar
  34. 34.
    Yamamoto, K., Tsuji, T., Matsumoto, I., and Osawa, T. (1981), Biochemistry 20, 5894–5899.CrossRefGoogle Scholar
  35. 35.
    Gallagher, J. T., Morris, A., and Dexter, T. M. (1985), Biochem. J. 231, 115–122.Google Scholar
  36. 36.
    Wright, C. S. (1987), J. Mol. Biol. 194, 501–529.CrossRefGoogle Scholar
  37. 37.
    Kuwabara, T., Nakamura, A., Ueno, A., and Toda, F. (1994), J. Phys. Chem. 98, 6297–6303.CrossRefGoogle Scholar
  38. 38.
    Greenfield, N. and Fasman, G. D. (1969), Biochemistry 8, 4108–4116.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Kenj Usui
    • 1
  • Tetsunori Jong
    • 1
  • Kin-ya Toioki
    • 1
  • Hisakan Mihara
    • 1
    Email author
  1. 1.Department of Bioengineering and the COE21 program, Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations