, Volume 1, Issue 2, pp 171–182 | Cite as

Applications of carbon nanotubes for cancer research

  • Kasif Teker
  • Ranjani Sirdeshmukh
  • Kousik Sivakumar
  • Shoaxin Lu
  • Eric Wickstrom
  • Hsin-Neng Wang
  • Tuan Vo-Dinh
  • Balaji Panchapakesan
Original Article


Carbon nanotubes have many unique properties such as high surface area, hollow cavities, and excellent mechanical and electrical properties. Interfacing carbon nanotubes with biological systems could lead to significant applications in various disease diagnoses. Significant progress in interfacing carbon nanotubes with biological materials has been made in key areas such as aqueous solubility, chemical and biological functionalization for biocompatibility and specificity, and electronic sensing of proteins. In addition, the bioconjugated nanotubes combined with the sensitive nanotube-based electronic devices would enable sensitive biosensors toward medical diagnostics. Furthermore, recent findings of improved cell membrane permeability for carbon nanotubes would also expand medical applications to therapeutics using carbon nanotubes as carriers in gene delivery systems. This article reviews the current trends in biological functionalization of carbon nanotubes and their potential applications for breast cancer diagnostics. The article also reports the applications of confocal microscopy for use in understanding the interactions of biological materials such as antibodies on carbon nanotubes that are specific to surface receptors in breast cancer cells. Furthermore, a nanotube-field-effect transistor is demonstrated for electronic sensing of antibodies that are specific to surface receptors in cancer cells.

Key Words

Single-wall carbon nanotubes nanotube-field-effect transistors biomolecular sensing antibodies confocal microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruoff, R. S. and Lorents, D. C. (1995), Carbon 33, 925–930.CrossRefGoogle Scholar
  2. 2.
    Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, New York.Google Scholar
  3. 3.
    Ebbesen, T. W. (1997), Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, FL.Google Scholar
  4. 4.
    Bockrath, M., Cobden, D. H., McEuen, P. L., et al. (1997). Science 275, 1922–1925.CrossRefGoogle Scholar
  5. 5.
    Yakobson, B. I. and Smalley, R. E. (1997), Am. Scientist 85, 324.Google Scholar
  6. 6.
    Ajayan, P. M. (1999), Chem. Rev. 99, 1787.CrossRefGoogle Scholar
  7. 7.
    Edelmann, F. T. (1999), Angew. Chem. Int. Ed. 38, 1381.CrossRefGoogle Scholar
  8. 8.
    Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996), Nature 384, 147.CrossRefGoogle Scholar
  9. 9.
    De Heer, W. A., Chatelain, A., and Ugarte, D. (1995), Science 270, 1179.CrossRefGoogle Scholar
  10. 10.
    Kong, J., Franklin, N. R., Zhou, et al. (2000), Science 287, 622.CrossRefGoogle Scholar
  11. 11.
    Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C. (2001), Science 294, 1317.CrossRefGoogle Scholar
  12. 12.
    Wong, S. S., Joselevich, E., Woolley, A., Cheung, C. L., and Lieber, C. M. (1998), Nature 394, 52.CrossRefGoogle Scholar
  13. 13.
    Koshino, A., Yudasaka, M., Zhang, M., and Iijima, S. (2001), Nano Lett. 1, 361.CrossRefGoogle Scholar
  14. 14.
    Georgakilas, V., Kordatos, K., Prato, M., Guldi, D. M., Holzinger, M., and Hirsch, A. (2002), J. Am. Chem. 124, 760.CrossRefGoogle Scholar
  15. 15.
    Davis, J. J., Green, L. H. M., Hill, H. A. O., et al. (1998), Inorg. Chem. Acta. 272, 261–266.CrossRefGoogle Scholar
  16. 16.
    Chen, R. J., Zhang, Y., Wang, D., and Dai, H. (2001), J. Am. Chem. Soc. 123, 3838.CrossRefGoogle Scholar
  17. 17.
    Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., et al. (2003). Proc. Natl. Acad. Sci. USA 100, 4984.CrossRefGoogle Scholar
  18. 18.
    Star, A., Gabriel, J. C. P., Bradley, K., and Gruner, G. (2003), Nano Lett. 3, 459.CrossRefGoogle Scholar
  19. 19.
    Chen, R. J., Choi, H. C., Bangsaruntip, S., et al. (2004), J. Am. Chem. Soc. 126, 1563.CrossRefGoogle Scholar
  20. 20.
    Ijiima, S. (1991), Nature 354, 56–58.CrossRefGoogle Scholar
  21. 21. Scholar
  22. 22.
    Ijiima, S. and Ichihashi, T. (1993), Nature 363, 603–605.CrossRefGoogle Scholar
  23. 23.
    Thess, A., Lee, R., Nikolaev, P., et al. (1996), Science 273, 483–487.CrossRefGoogle Scholar
  24. 24.
    Kong, J., Soh, H.T., Cassell, A., Quate, C. F., and Dai, H. (1998), Nature 395, 878.CrossRefGoogle Scholar
  25. 25.
    Pompeo, F. and Resasco, D. E. (2002), Nano Lett. 2, 369.CrossRefGoogle Scholar
  26. 26.
    Georgakilas, V., Tagmatarchis, N., Pantarotto, D., Bianco, A., Briand, J. P., and Prato, M. (2002), Chem. Commun. 24, 3050.CrossRefGoogle Scholar
  27. 27.
    Dwyer, C., Guthold, M., Falvo, M., Washburn, S., Superfine, R., and Erie, D. (2002), Nanotechnology 13, 601.CrossRefGoogle Scholar
  28. 28.
    Baker, S. E., Cai, W., Lasseter, T. L., Weidkamp, K. P., and Hamers, R. J. (2002), Nano Lett. 2, 1413.CrossRefGoogle Scholar
  29. 29.
    Garg, A. and Sinnott, S. B. (1998). Chem. Phys. Lett. 295, 273.CrossRefGoogle Scholar
  30. 30.
    Bahr, J. L., Yang, J., Kosynkin, D. V., Bronikowski, M. J., Smalley, R. E., and Tour, J. M. (2001), J. Am. Chem. Soc. 123, 6536.CrossRefGoogle Scholar
  31. 31.
    Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., and Yodh, A. G. (2003), Nano Lett. 3, 269.CrossRefGoogle Scholar
  32. 32.
    Matarredona, O., Rhoads, H., Li, Z., Harwell, H. J., Balzano, L., and Resasco, E. (2003), J. Phys. Chem. B 107, 13357.CrossRefGoogle Scholar
  33. 33.
    Burchell, T. D. (1999). Carbon Materials for Advanced Technologies, Pergamon, New York.Google Scholar
  34. 34.
    Chen, B. X., Wilson, S. R., Das, M., Coughlin, D. J., and Erlanger, B. F. (1998), Proc. Natl. Acad. Sci. USA 95, 10809.CrossRefGoogle Scholar
  35. 35.
    Braden, B. C., Fernando, A. G., Chen, B. X., Kirschner, A. N., Wilson, S. R., and Erlanger B. F. (2000), Proc. Natl. Acad. Sci. USA 97, 12193.CrossRefGoogle Scholar
  36. 36.
    Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., and Mioskowski, C. (1999), Angew. Chem. Int. Ed. 38, 1912–1915.CrossRefGoogle Scholar
  37. 37.
    Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., and Green, M. L. H. (2002), J. Am. Chem. Soc. 124, 12664.CrossRefGoogle Scholar
  38. 38.
    Huang, W., Taylor, S., Fu, K., et al. (2002), Nano Lett. 2, 311.CrossRefGoogle Scholar
  39. 39.
    Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., and Dai, H. (2002), Nano Lett. 2, 285.CrossRefGoogle Scholar
  40. 40.
    Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., and Whitesides, G. M. (2001), Langmuir 17, 5605.CrossRefGoogle Scholar
  41. 41.
    Lin, Y., Allard, L. F., and Sun, Y. P. (2004), J. Phys. Chem. B 108, 3760.CrossRefGoogle Scholar
  42. 42.
    Sirdeshmukh, R., Teker, K., and Panchapakesan, B. (2004) in Biological and Bioinspired Materials and Devices, Aizenberg, J., Landis, W. J., Orme, C., and Wang, R. eds., Materials Research Society Symposium Proc. 823, W4.1–W4.3 Warrendale, PA, 2004.Google Scholar
  43. 43.
    Teker K., Sirdeshmukh, R., and Panchapakesan, B. (2004), IEEE Proceedings on 2004 International Conference on MEMS, Nano and Smart Systems, 47–51.Google Scholar
  44. 44.
    Teker, K. and Panchapakesan, B. (2004), Proceedings of the IEEE Sensors, Austria, Vienna.Google Scholar
  45. 45.
    Teker, K. and Panchapakesan, B. (2005), IEEE Sensors, in press.Google Scholar
  46. 46.
    Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P. (1998), Appl. Phys. Lett. 73, 2447.CrossRefGoogle Scholar
  47. 47.
    Jhi, S.-H., Louie, S. G., and Cohen, M. L. (2000), Phys. Rev. Lett. 85, 1710.CrossRefGoogle Scholar
  48. 48.
    Ulbricht, H., Moos, G., and Hertel, T. (2002), Phys. Rev. B 66, 075404.Google Scholar
  49. 49.
    Shim, M., Javey, A., Kam, N. W. S., and Dai, H. (2001), J. Am. Chem Soc. 123, 11,512.Google Scholar
  50. 50.
    Bradley, K., Briman, M., Star, A., and Gruner, G. (2004), Nano Lett. 4, 253.CrossRefGoogle Scholar
  51. 51.
    Lee, S. W. and Laibinis, P. E. (1998), Biomaterials 19, 1669.CrossRefGoogle Scholar
  52. 52.
    Pantarotto, D., Briand, J., Prato, M. and Bianco, A. (2004), Chem. Commun. 1, 16.CrossRefGoogle Scholar
  53. 53.
    Pantarotto, D., Singh, R., McCarthy, D., et al. (2004), Angew. Chem. Int. Ed. 43, 5242.CrossRefGoogle Scholar
  54. 54.
    Shi Kam, N. W., Jessop, T. C., Wender, P. A. and Dai, H. (2004), J. Am. Chem. Soc. 126, 6850.CrossRefGoogle Scholar
  55. 55.
    Lin, Y., Taylor, S., Li, H., et al. (2004), J. Mater. Chem. 14, 527.CrossRefGoogle Scholar
  56. 56.
    Furtado, C. A., Kim, U. J., Gutierrez, H. R., Pan, L., Dickey, E. C., and Eklund P. C. (2004), J. Am. Chem. Soc. 126, 6095.CrossRefGoogle Scholar
  57. 57.
    Erlanger, B. F., Cheng, B. X., Zhu, M., and Brus, L. (2001), Nano Lett. 1, 465.CrossRefGoogle Scholar
  58. 58.
    Hayes, D. F., Walker, T. M., Singh, B., et al. (2002), Int. J. Oncol. 21(5),1111–1117.Google Scholar
  59. 59.
    Guvakova, M. A. and Surmacz, E. (1997), Exp. Cell. Res. 231(1), 149.CrossRefGoogle Scholar
  60. 60.
    Le Roy, X., Escot, C., Brouillet, J. P., et al. (1991), Oncogene 6(3), 431–437.Google Scholar
  61. 61.
    Prakash, R., Washburn, S., Superfine, R., Cheney, E., and Malvo, M. R. (2003), Appl. Phys. Lett. 83, 1219.CrossRefGoogle Scholar
  62. 62.
    Manders, E. M. M., Verbeek, F. J., and Aten, J. A. (1993), J. Microsc. 169, 375.Google Scholar
  63. 63.
    Teker, K., Sirdeshmukh, R., and Panchapakesan, B. (2004), IEEE Sensors 2004, Oct. 2004, Vienna, Austria.Google Scholar
  64. 64.
    Bradley, K., Gabriel, J.-C. P., Briman, M., Star, A., and Gruner, G. (2003), Phys. Rev. Lett. 91, 218301.CrossRefGoogle Scholar
  65. 65.
    Chang, H., Lee, J. D., Lee, S. M., and Lee, Y. H. (2001), Appl. Phys. Lett. 79, 3863.CrossRefGoogle Scholar
  66. 66.
    Kong, J. and Dai, H. (2001), J. Phys. Chem. B 105, 2890.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Kasif Teker
    • 1
  • Ranjani Sirdeshmukh
    • 1
  • Kousik Sivakumar
    • 1
  • Shoaxin Lu
    • 1
  • Eric Wickstrom
    • 2
  • Hsin-Neng Wang
    • 3
  • Tuan Vo-Dinh
    • 3
  • Balaji Panchapakesan
    • 1
  1. 1.Delaware Nanotechnology Laboratory, Department of Electrical and Computer EngineeringUniversity of DelawareNewarkUSA
  2. 2.Department of Biochemistry and Molecular PharmacologyThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Center for Advanced Biomedical PhotonicsOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations