, Volume 1, Issue 1, pp 83–92 | Cite as

Carbon-nanotube-modified electrodes for the direct bioelectrochemistry of pseudoazurin

  • Anthony Guiseppi-Elie
  • Sean Brahim
  • Gary Wnek
  • Ray Baughman
Original Article


The bioelectrochemistry of the blue copper protein, pseudoazurin, at glassy carbon and platinum electrodes that were modified with single-wall carbon nanotubes (SWNTs) was investigated by multiple scan rate cyclic voltammetry. The protein showed reversible electrochemical behavior at both bare glassy carbon electrodes (GCEs) and SWNT-modified GCEs (SWNT|GCEs); however, direct electrochemistry was not observed at any of the platinum electrodes. The effect of the carbon nanotubes at the GCE was to amplify the current response 1000-fold (nA at bare GCE to µA at SWNT|GCE), increase the apparent diffusion coefficient D app of the solution-borne protein by three orders of magnitude, from 1.35 × 10−11 at bare GCE to 7.06 × 10−8 cm2 s-1 at SWNT|GCE, and increase the heterogeneous electron transfer rate constant k s threefold, from 1.7 × 10−2 cm s−1 at bare GCE to 5.3 × 10−2 cm s−1 at SWNT|GCE. Pseudoazurin was also found to spontaneously adsorb onto the nanotube-modified GCE surface. Well-resolved voltammograms indicating quasi-reversible faradaic responses were obtained for the adsorbed protein in phosphate buffer, with I pc and I pa values now greater than corresponding values for solution-borne pseudoazurin at SWNT|GCEs and with significantly reduced ΔE p values. The largest electron transfer rate constant of 1.7 × 10−1 cm s−1 was achieved with adsorbed pseudoazurin at the SWNT|GCE surface in deaerated buffer solution consistent with its presumed role in anaerobic respiration of some bacteria.

Key Words

Carbon nanotubes nanoelectrodes metalloproteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Britto, P. J., Santhanam, K. S. V., and Ajayan, P. M. (1996), Bioelectrochem. Bioener. 41, 121–125.CrossRefGoogle Scholar
  2. 2.
    Hamada, N., Sawada, S., and Oshiyama, A. (1992), Phys. Rev. Lett. 68, 1579–1581.CrossRefGoogle Scholar
  3. 3.
    Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S. (1992), Appl. Phys. Lett. 60, 2204–2206.CrossRefGoogle Scholar
  4. 4.
    Journet, C., Maser, W. K., Bernier, P., et al. (1997), Nature 388, 756–758.CrossRefGoogle Scholar
  5. 5.
    Munoz, E., Maser, W. K., Benito, A. M., et al. (2000), Carbon 38, 1445–1451.CrossRefGoogle Scholar
  6. 6.
    Dillon, C., Parilla, P. A., Alleman, J. L., Perkins, J. D., and Heben, M. J. (2000), Chem. Phys. Lett. 316, 13–18.CrossRefGoogle Scholar
  7. 7.
    Hsu, W. K., Hare, J. P., Terrones, M., Kroto, H. W., Walton, D. R. M., and Harris, P. J. F. (1995), Nature 377, 687.CrossRefGoogle Scholar
  8. 8.
    Matveev, A. T., Golberg, D., Novikov, V. P., Klimkovich, L. L., and Bando, Y. (2001), Carbon 39, 155–158.CrossRefGoogle Scholar
  9. 9.
    Terrones, M. (2003), Annu. Rev. Mater. Res. 33, 419–501.CrossRefGoogle Scholar
  10. 10.
    Su M., Zheng, B., and Liu, J. (2000), Chem. Phys. Lett. 322, 321–326.CrossRefGoogle Scholar
  11. 11.
    Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999), Nature 398, 761–762.CrossRefGoogle Scholar
  12. 12.
    Alvarez, L., Guillard, T., Sauvajol, J. L., Flamant, G., and Laplaze, D. (2000), Appl. Phys. A 70, 169–173.CrossRefGoogle Scholar
  13. 13.
    Alvarez, L., Guillard, T., Olalde, G., Rivoire, B., Robert, J. F., and Flamant, G. (1999), Synth. Met. 103, 2476–2477.CrossRefGoogle Scholar
  14. 14.
    Iijima, S. and Ichihashi, T. (1993), Nature 363, 603–605.CrossRefGoogle Scholar
  15. 15.
    Bethune, D. S., Kiang, C. H., Devries, M. S., et al. (1993), Nature 363, 605–607.CrossRefGoogle Scholar
  16. 16.
    Baughman, R. H., Cui, C., Zakhidov, A. A., et al. (1999), Science 284, 1340–1344.CrossRefGoogle Scholar
  17. 17.
    Novak, J. P., Lay, M. D., Perkins, F. K., and Snow, E. S. (2004), Solid-State Electron. 48(10–11), 1753–1756.CrossRefGoogle Scholar
  18. 18.
    Biercuk, M. J., Llaguno, M. C., Radosvljevic, M., Hyun, J. K., Johnson, A. T., and Fischer, J. E. (2002), Appl. Phys. Lett. 80(15), 2767–2769.CrossRefGoogle Scholar
  19. 19.
    Ounaies, Z., Park, C., Wise, K. E., Siochi, E. J., and Harrison, J. S. (2003), Compos. Sci. Technol. 63, 1637–1646.CrossRefGoogle Scholar
  20. 20.
    Weisenberger, M.C., Grulke, E. A., Jacques, D., Rantell, T., and Andrews, R. (2003), J. Nanosci. Nanotech. 3(sn6), 535–539.CrossRefGoogle Scholar
  21. 21.
    Colbert, D. T. (2003), Plastics Additives Compd. 5(1), 18–25.CrossRefGoogle Scholar
  22. 22.
    Dalton, A. B., Collins, S., and Munoz, E., et al. (2003), Nature 423, 703.CrossRefGoogle Scholar
  23. 23.
    Liu, C. Y., Bard, A. J., Wudl, F., Weitz, I., and Heath, J. R. (1999), Electrochem. Solid State Lett. 2, 577–578.CrossRefGoogle Scholar
  24. 24.
    Wang, J., Li, M., Shi, Z., Li, N., and Gu, Z. (2002), Anal. Chem. 74, 1993–1997.CrossRefGoogle Scholar
  25. 25.
    Guiseppi-Elie, A., Lei, C., and Baughman, R. H. (2002), Nanotechnology 13, 559–564.CrossRefGoogle Scholar
  26. 26.
    Gooding, J. J., Wibowo, R., Liu, J., et al. (2003), J. Am. Chem. Soc. 125, 9006–9007.CrossRefGoogle Scholar
  27. 27.
    Davis, J. J., Coles, R. J., and Hill, H. A. O. (1977), J. Electroanal. Chem. 440, 279–282.CrossRefGoogle Scholar
  28. 28.
    Chen, R. J., Zhang, Y., Wang, D., and Dai, H. (2001), J. Am. Chem. Soc. 123, 3838–3839.CrossRefGoogle Scholar
  29. 29.
    Musameh, M., Wang, J., Merkoci, A., and Liu, Y. (2002), Electrochem. Commun. 4, 743–746.CrossRefGoogle Scholar
  30. 30.
    Rubianes, M. D. and Rivas, G. A. (2003), Electrochem. Commun. 5, 689–694.CrossRefGoogle Scholar
  31. 31.
    Wang, J., Musameh, M., and Lin, Y. (2003), J. Am. Chem. Soc. 125, 2408–2409.CrossRefGoogle Scholar
  32. 32.
    Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., and Green, M. L. H. (2002), J. Am. Chem. Soc. 124, 12664–12665.CrossRefGoogle Scholar
  33. 33.
    Wang, S. G., Zhang, Q., Wang, R., et al. (2003), Electrochem. Commun. 5, 800–803.CrossRefGoogle Scholar
  34. 34.
    Rege, K., Raravikar, N. R., Kim, D., Schadler, L. S., Ajayan, P. M., and Dordick, J. S. (2003), Nano Lett. 3, 829–832.CrossRefGoogle Scholar
  35. 35.
    Yamamoto, K., Shi, G., Zhou, T., et al. (2003), Analyst 128, 249–254.CrossRefGoogle Scholar
  36. 36.
    Sotiropoulou, S., Gavalas, V., Vamvakaki, V., and Chaniotakis, N. A. (2003), Biosens. Bioelectron. 18, 211–215.CrossRefGoogle Scholar
  37. 37.
    Sotiropoulou, S. and Chaniotakis, N. A. (2003), Anal. Bioanal. Chem. 375, 103–105.Google Scholar
  38. 38.
    Gao, M., Dai, L., and Wallace G. G. (2003), Synth. Metals 137, 1393–1394.CrossRefGoogle Scholar
  39. 39.
    Gao, M., Dai, L., and Wallace, G. G. (2003), Electroanalysis 15, 1089–1094.CrossRefGoogle Scholar
  40. 40.
    Wang, J. and Musameh, M. (2003), Anal. Chem. 75, 2075–2079.CrossRefGoogle Scholar
  41. 41.
    Wang, J. and Musameh, M. (2003), Analyst 128, 1382–1385.CrossRefGoogle Scholar
  42. 42.
    Verhoeven, W. and Takeda, Y. (1956), In: Inorganic Nitrogen Metabolism, McElroy, W. D. and Glass, B. (eds.). Johns Hopkins Press, Baltimore, 1956, p. 156.Google Scholar
  43. 43.
    Adman, E. T. (1991), Adv. Protein Chem. 42, 145–197.CrossRefGoogle Scholar
  44. 44.
    Adman, E. T. (1986), In: Topics in Molecular and Structural Biology, Harrison, P. M. (eds.). VCH, Weinheim, vol. 6, p. 1.Google Scholar
  45. 45.
    Adman, E. T. (1991), Adv. Protein Chem. 42, 144.Google Scholar
  46. 46.
    Stryer, L. (1988), Biochemistry, W.H. Freeman, New York.Google Scholar
  47. 47.
    Kohzuma, T., Dennison, C., McFarlane, W., et al. (1995), J. Biol. Chem. 270, 25733–25738.CrossRefGoogle Scholar
  48. 48.
    Thess, A., Lee, R., Nikolaev, P., et al. (1996), Science 273, 483–487.CrossRefGoogle Scholar
  49. 49.
    Liu, J., Rinzler, A. G., Dai, H., et al. (1998), Science. 280, 1253–1256.CrossRefGoogle Scholar
  50. 50.
    Sakurai, T., Nose, F., Fujiki, T., and Suzuki, S. (1996), Bull. Chem. Soc. Jpn. 69, 2855–2862.CrossRefGoogle Scholar
  51. 51.
    Sakurai, T., Ikeda, O., and Suzuki, S. (1990), Inorg. Chem. 29, 4715–4718.CrossRefGoogle Scholar
  52. 52.
    Nicholson, R. S. (1965), Anal. Chem. 37, 1351–1355.CrossRefGoogle Scholar
  53. 53.
    Laviron, E. (1979), J. Electroanal. Chem. 101, 19–28.CrossRefGoogle Scholar
  54. 54.
    Ucar, M. and Menek, N. (2003), Turk. J. Chem. 27, 155–166.Google Scholar
  55. 55.
    Gosser, Jr., D. K. (1993) Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. VCH Publishers, New York.Google Scholar
  56. 56.
    Garrido, J. A., Rodriguez, R. M., Bastida, R. M., and Brillas, E. (1992), J. Electroanal. Chem. 324, 19–32.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Anthony Guiseppi-Elie
    • 1
    • 3
  • Sean Brahim
    • 1
  • Gary Wnek
    • 1
    • 3
  • Ray Baughman
    • 2
  1. 1.Center for Bioelectronics, Biosensors, and Biochips (C3B)Virginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Chemistry and Nanotechnology CenterUniversity of Texas at DallasRichardsonUSA
  3. 3.Department of Chemical Engineering, Center for Bioelectronics, Biosensors, and Biochips (C3B)Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations