, Volume 1, Issue 1, pp 23–33 | Cite as

Molecular templates for bio-specific recognition by low-energy electron beam lithography

  • Wageesha Senaratne
  • Prabuddha Sengupta
  • Cindy Harnett
  • Harold Craighead
  • Barbara Baird
  • Christopher K. Ober
Original Article


Protein patterning has become an important topic as advances are made in biologically integrated devices and protein chip technology. Versatile and effective patterning requires substrates that can be quantified, with active presentation of proteins and control over protein density and orientation. Herein we describe a model system and the use of low-energy electron beam lithography to pattern molecular templates for immobilization of antibodies through ligand recognition. The templates were patterned over a background of poly(ethylene glycol) (PEG) modified silicon oxide (SiOx). These substrates were exposed to a low-voltage (2 keV) electron beam to remove PEG selectively from exposed regions. These regions were then functionalized with a dinitrophenyl (DNP) ligand and tested for specific binding of fluorescently labeled anti-DNP antibodies. The PEG modified regions in conjunction with ligand-presenting regions in the patterned arrays substantially reduces non-specific adsorption of proteins, yielding a specific/nonspecific ratio of approx 10. The surface coverage of the biologically active DNP groups on SiOx and the amount of immobilized antibody on DNP were measured with a fluorescence-based, enzyme-linked immunosorbent assay. The specificity of the interaction between DNP ligand and fluorescently labeled anti-DNP antibodies was evaluated with fluorescence microscopy. This approach to patterning of molecular templates and assays for quantification are generally applicable to immobilization of any ligand-receptor pair on a wide range of substrates.

Key Words

Protein patterning ligand-antibody immobilization self-assembled monolayers electron beam lithography poly(ethylene glycol) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blawas, A. S. and Reichert, W. M. (1998), Biomaterials 19, 595–609.CrossRefGoogle Scholar
  2. 2.
    Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., and Whitesides, G. M. (1999), Biomaterials 20, 2363–2376.CrossRefGoogle Scholar
  3. 3.
    Craighead, H. G., Turner, S. W., Davis, R. C., et al. (1998) Biomed. Microdev. 1, 49–64.CrossRefGoogle Scholar
  4. 4.
    Mrksich, M. (2000), Chem. Soc. Rev. 29, 267–273.CrossRefGoogle Scholar
  5. 5.
    Folch, A. and Toner, M. (2000), Ann. Rev. Biomed. Eng. 2, 227–256.CrossRefGoogle Scholar
  6. 6.
    Kleinfield, D., Kahler, K. H., and Hockberger, P. E. (1988), J. Neurosci. 8, 4098–4120.Google Scholar
  7. 7.
    Britland, S., Perez-Arnaud, E., Clark, P., McGinn, B., Connoly, P., and Moores, G. (1992), Biotechnol. Prog. 8, 155–160.CrossRefGoogle Scholar
  8. 8.
    Stenger, D. A., Georger, J. H., Dulcey, C. S. et al. (1992), J. Am. Chem. Soc. 114, 8435–8442.CrossRefGoogle Scholar
  9. 9.
    Bhatia, S. K., Teixeira, J. L., Anderson, M., et al. (1993), Anal. Biochem. 208, 197–205.CrossRefGoogle Scholar
  10. 10.
    Pritchard, D. J., Morgan, H., and Cooper, J. M. (1995), Angew. Chem. Int. Ed. 34, 91–93.CrossRefGoogle Scholar
  11. 11.
    Mooney, J. F., Hunt, A. J., McIntosh, J. R., Librerko, C. A., Walba, D. M., and Rogers, C. T. (1996) Proc. Natl. Acad. Sci. 93, 12287–12291.CrossRefGoogle Scholar
  12. 12.
    Singhvi, R., Kumar, A., Lopez, G. P., (1994), Science 264, 696–698.CrossRefGoogle Scholar
  13. 13.
    Kumar, A., Abbott, N., Kim, E., Biebuyck, H., and Whitesides, G. M. (1995), Acc. Chem. Res. 28, 219.CrossRefGoogle Scholar
  14. 14.
    Wilson, D. L., Martin, R., Hong, S., Cronin-Golomb, M., Mirkin, C.A., and Kaplan, D. L. (2001), Proc. Natl. Acad. Sci. USA 98, 13660–13664.CrossRefGoogle Scholar
  15. 15.
    Hyun, J., Ahn, S. J., Lee, W. K., Chilkoti, A., and Zauscher, S. (2002), Nano Lett. 2, 1203–1207.CrossRefGoogle Scholar
  16. 16.
    Hoff, J. D., Cheng, L., Meyhofer, E., Guo, L. J., and Hunt, A. J. (2004), Nano Lett. 4, 853–857.CrossRefGoogle Scholar
  17. 17.
    Harris, J. M. (1992) Poly(ethyleneglycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Press, New York, and references therein.Google Scholar
  18. 18.
    Lee, J. H., Lee, H. B., and Andrade, J. D. (1995), Prog. Polym. Sci. 20, 1043–1079.CrossRefGoogle Scholar
  19. 19.
    Lercel, M. J., Whelan, C. S., Craighead, H. G., Seshadri, K., and Allara, D. L. (1996), J. Vac. Sci. Technol. B 14, 4085–4090.CrossRefGoogle Scholar
  20. 20.
    Golzhauser, A., Geyer, W., Stadler, V., et al. (2000), J. Vac. Sci. Technol. B 18, 3414–3418.CrossRefGoogle Scholar
  21. 21.
    Lin, X. M., Parthasarathy, R., and Jaeger, H. M. (2001), Appl. Phys. Lett. 78, 1915–1917.CrossRefGoogle Scholar
  22. 22.
    Feldstein, M. J., Golden, J. P., Rowe, C. A., MacCraith, B. D., Ligler, Sakurai, H., Oyama, N., Tokuda, K., and Ohsaka, T. (1999), J. Biomed. Microdevices 1, 139.CrossRefGoogle Scholar
  23. 23.
    Delamarche, E., Bernard, A., Schmid, H., Michel, B., and Biebuyck, H. (1997), Science 276, 779.CrossRefGoogle Scholar
  24. 24.
    Foquet, M. E., Han, J., Lopez, A., Wright, W., and Craighead, H. G. (1998), Proceedings of SPIE — The International Society of Optical Engineering 3258, 141–147.Google Scholar
  25. 25.
    Harnett, C. K., Satyalakshmi, K. M., and Craighead, H. G. (2001), Langmuir 17, 178–182.CrossRefGoogle Scholar
  26. 26.
    Harnett, C. K., Satyalakshmi, K. M., and Craighead, H. G. (2000), Appl. Phys. Lett. 76, 2466–2468.CrossRefGoogle Scholar
  27. 27.
    Glezos, N., Misiakos, K., Kakabakos, S., Petrou, P., and Terzoudi, G. (2002), Biosens. Bioelectron. 17, 279–282.CrossRefGoogle Scholar
  28. 28.
    Huang, S. C., Caldwell, K. D., Lin, J. N., Wang, H. K., and Herron, J. N. (1996), Langmuir 12, 4292–4298.CrossRefGoogle Scholar
  29. 29.
    Nijas, M., Gelbcke, M., Azarkan, M., Brygier, J., Guermant, C., Baeyens-Volant, D., Musu, T., Paul, C., and Looze, Y. (1994), Appl. Biochem. Biotechnol. 49, 75.Google Scholar
  30. 30.
    Zalipsky, S., Seltzer, R., and Menon-Rudolph, S. (1992), Biotechnol. Appl. Biochem. 15, 100–114.Google Scholar
  31. 31.
    Haugland, R. P. and You, W. W. (1995), Methods Mol. Biol. 45, 223–233.Google Scholar
  32. 32.
    Haugland, R. P. and You, W. W. (1998), Methods Mol. Biol. 80, 173–183.CrossRefGoogle Scholar
  33. 33.
    Deguchi, Y., Kurihara, A., and Pardrigde, W. M. (1999), Bioconjugate Chem. 10, 32–37.CrossRefGoogle Scholar
  34. 34.
    Prime, K. L. and Whitesides, G. M. (1993), J. Am. Chem. Soc. 115, 10714–10721.CrossRefGoogle Scholar
  35. 35.
    Mrksich, M., Sigal, G. B., and Whitesides, G. M. (1995), Langmuir 11, 4383–4385.CrossRefGoogle Scholar
  36. 36.
    Malmstem, M., Emoto, K., and Van Alstine, J. M. (1998), J. Colloid Interf. Sci. 202, 507–517.CrossRefGoogle Scholar
  37. 37.
    Lee, S. W. and Laibinis, P.E. (1998), Biomaterials 19, 1669–1675.CrossRefGoogle Scholar
  38. 38.
    Sofia, S. J., Premnath, V. and Merrill, E. W. (1998), Macromolecules 31, 5059–5070.CrossRefGoogle Scholar
  39. 39.
    Piehler, J., Brecht, A., Valiokas, R., Liedberg, B., and Gauglitz, G. (2000), Biosens. Bioelectron. 15, 473–481.CrossRefGoogle Scholar
  40. 40.
    Benesch, J., Svedhem, S., Svensson, S. T., Valiokas, R., Liedberg, B., and Tengvall, P. (2001), J. Biomater. Sci., Polym. Ed. 12, 581–597.CrossRefGoogle Scholar
  41. 41.
    Zhu, B., Eurell, T., Gunawan, R., and Leckband, D. (2001), J. Biomed. Mater. Res. 56, 406–421.CrossRefGoogle Scholar
  42. 42.
    Zhang, M., Desai, T., and Ferrari, M. (1998), Biomaterials 19, 953–960.CrossRefGoogle Scholar
  43. 43.
    Zhang, M. and Ferrari, M. (1998), Biomedical Microdevices 1, 81–89.CrossRefGoogle Scholar
  44. 44.
    Andruzzi, L., Senaratne, W., Hexemer, A., et al. (2005), Langmuir, 21, 2495–2504.CrossRefGoogle Scholar
  45. 45.
    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber, D. E. (1998), Biotechnol. Prog. 14, 356–363.CrossRefGoogle Scholar
  46. 46.
    Houseman, B. T., Huh, J. H., Kron, S. J., and Mrksich, M. (2002), Nat. Biotech. 20, 270–274.CrossRefGoogle Scholar
  47. 47.
    Houseman, B. T., Gawalt, E. S., and Mrksich, M. (2003), Langmuir 19, 1522–1531.CrossRefGoogle Scholar
  48. 48.
    Lopez, G. P., Albers, M. W., Schreiber, S. L., Carroll, R., Peralta, E., and Whitesides, G. M. (1993), J. Am. Chem. Soc. 115, 5877–5878.CrossRefGoogle Scholar
  49. 49.
    Yang, Z., Galloway, J. A., and Yu. H. (1999), Langmuir 15, 8405–8411.CrossRefGoogle Scholar
  50. 50.
    Jo, S. and Park, K. (2000), Biomaterials 21, 605–616.CrossRefGoogle Scholar
  51. 51.
    Eisen, N.E. and Siskind, G.W. (1964), Biochemistry 3, 996–1008.CrossRefGoogle Scholar
  52. 52.
    Senaratne, W., Sengupta, P., Jakubek, V., Holowka, D., Ober, C., and Baird, B. (2005), to be published.Google Scholar
  53. 53.
    Shriver, L. C.-Lake, Donner, B., Edelstein, R., Breslin, K., Bhatia, S. K., and Ligler, F. S. (1997), Biosens. Bioelectron. 12, 1101–1106.CrossRefGoogle Scholar
  54. 54.
    Lahiri, J., Otsuni, E., and Whitesides, G. M. (1999), Langmuir 15, 2055–2060.CrossRefGoogle Scholar
  55. 55.
    Grunwald, C., Eck, W., Optiz, N., Kulmann, J., and Woll, C. (2004), Phys. Chem. Chem. Phys. 6, 4358–4362.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Wageesha Senaratne
    • 1
    • 2
    • 4
  • Prabuddha Sengupta
    • 2
  • Cindy Harnett
    • 3
    • 4
  • Harold Craighead
    • 3
    • 4
  • Barbara Baird
    • 2
    • 4
  • Christopher K. Ober
    • 1
    • 4
  1. 1.Materials Science and EngineeringCornell UniversityIthacaUSA
  2. 2.Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  3. 3.School of Applied and Engineering PhysicsCornell UniversityIthacaUSA
  4. 4.Nanobiotechnology CenterCornell UniversityIthacaUSA

Personalised recommendations