Advertisement

Medical Oncology

, Volume 19, Issue 1, pp 1–9 | Cite as

Rapid induction of long-lasting drug efflux activity in brain vascular endothelial cells but not malignant glioma following irradiation

  • U. Andersson
  • K. Grankvist
  • A. T. Bergenheim
  • P. Behnam-Motlagh
  • H. Hedman
  • R. HenrikssonEmail author
Original Article

Abstract

The influence of radiotherapy on malignant glioma multidrug resistance to chemotherapy was evaluated because patients with glioma often are treated with a combination of radiotherapy and chemotherapy. Multidrug resistance gene (MDR1, mdr1a, and mdr1b) transcripts were found in human and rat glioma cell lines. P-Glycoprotein (Pgp) was immunohistochemically detected in glioma cell lines and in the rat brain vascular endothelial cell line (RBE4). A multidrug resistance pump efflux activity assay demonstrated increased calcein efflux of RBE4 endothelial cells, but not glioma cells, 2 h after irradiation and still increased 14 d after irradiation. The increased efflux was equally inhibited by verapamil with or without irradiation. In the rat intracranial glioma model (BT4C), Pgp was demonstrated in capillary endothelial cells of the tumor tissue and surrounding normal brain, but not in tumor cells. The expression of gene transcripts or Pgp was not affected by irradiation. The results indicate that long-lasting verapamil-resistant drug efflux mechanisms are activated in brain endothelial cells after irradiation. The results might explain the poor efficacy of chemotherapy following radiotherapy and contribute to consideration of new treatment strategies in the management of malignant glioma.

Key Words

Glioma P-glycoprotein drug resistance blood-brain barrier irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biedler, J.L. (1992). Genetic aspects of multidrug resistance. Cancer 70:1799–1809.PubMedCrossRefGoogle Scholar
  2. 2.
    Gottesman, M.M. and Pastan, I. (1993). Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385–427.PubMedCrossRefGoogle Scholar
  3. 3.
    Schinkel, A.H. (1997). The physiological function of drug-transporting P-glycoproteins, Semin. Cancer Biol. 8:161–170.PubMedCrossRefGoogle Scholar
  4. 4.
    Jetté, L., Murphy, G.F., Leclerc, J.M. and Beliveau, R. (1995). Interaction of drugs with P-glycoprotein in brain capillaries. Biochem. Pharmacol. 50:1701–1709.PubMedCrossRefGoogle Scholar
  5. 5.
    Arboix, M., Paz, O.G., Colombo, T. and D’Incalci, M. (1997). Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J. Pharmacol. Exp. Ther. 281:1226–1230.PubMedGoogle Scholar
  6. 6.
    Tanaka, Y., et al. (1994). Ultrastructure localization of P-glycoprotein on capillary endothelial cells in human glioma. Virchows Arch. 425:133–138.PubMedCrossRefGoogle Scholar
  7. 7.
    Regina, A., et al. (1998). Mrpl Multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71:705–715.PubMedCrossRefGoogle Scholar
  8. 8.
    Allen, J.D., Brinkhuis, R.F., van Deemter, L., Wijnholds, J. and Schinkel, A.H. (2000). Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance. Cancer Res. 60:5761–5766.PubMedGoogle Scholar
  9. 9.
    Ng, I.O.L., Lam, K.Y., Ng, M., Kwong, D.L.W. and Sham, J.S.T. (1998). Expression of P-glycoprotein, a multidrug-resistance gene product, is induced by radiotherapy in patients with oral squamous cell carcinoma. Cancer 83:851–857.PubMedCrossRefGoogle Scholar
  10. 10.
    Bergenheim, A.T., et al. (1994). Cytotoxic effect and uptake of estramustine in a rat glioma model. Int. J. Oncol. 5:293–299.Google Scholar
  11. 11.
    Jonsson, Ö., Behnam-Motlagh, P., Persson, M., Henriksson, R. and Grankvist, K. (1999). Increase in doxorubicin cytotoxicity by carvedilol inhibition of P-glycoprotein activity. Biochem. Pharmacol. 58:1801–1806.PubMedCrossRefGoogle Scholar
  12. 12.
    Hendersson, S.D., Kimler, B.F. and Morantz, R.A. (1981). Radiation therapy of 9L rat brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 7:497–502.Google Scholar
  13. 13.
    Bergenheim, A.T., Zackrisson, B., Elfversson, J., Roos, G. and Henriksson, R. (1995). Radiosensitizing effect of estramustine in malignant glioma in vitro and in vivo. J. Neuro-Oncol. 23:191–200.CrossRefGoogle Scholar
  14. 14.
    Johansson, M., Bergenheim, A.T., Widmark, A. and Henriksson, R. (1999). Effects of radiotherapy and estramustine on the microvasculature in malignant glioma. Br. J. Cancer 80:142–148.PubMedCrossRefGoogle Scholar
  15. 15.
    Holló, Z., Homolya, L., William Davis, C. and Sarkadi, B. (1994). Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim. Biophys. Acta 1191:384–388.PubMedCrossRefGoogle Scholar
  16. 16.
    Liminga, G., Nygren, P. and Larsson, R. (1994). Microfluorometic evaluation of calcein acetoxymethyl ester as a probe for P-glycoprotein-mediated resistance: Effects of cyclosporin A and its nonimmunosuppressive analogue SDZ PSC 833. Exp. Cell Res. 212:291–296.PubMedCrossRefGoogle Scholar
  17. 17.
    Holló, Z., et al. (1998). Parallel functional and immunological detection of human multidrug resistance proteins, P-glycoprotein and MRP1. Anticancer Res. 18:2981–2988.PubMedGoogle Scholar
  18. 18.
    Homolya, L., et al. (1993). Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 268:21,493–21,496.Google Scholar
  19. 19.
    Hill, B.T., Deuchars, K., Hosking, L.K., Ling, V. and Whelan, R.D.H. (1990). Overexpression of P-glycoprotein in mammalian tumor cell lines after fractionated X-irradiation in vitro. J. Natl. Cancer Inst. 82:607–612.PubMedCrossRefGoogle Scholar
  20. 20.
    McClean, S. and Hill, B.T. (1993). Evidence of post-translational regulation of P-glycoprotein associated with the expression of a distinctive multiple drug-resistant phenotype in Chinese hamster ovary cells. Eur. J. Cancer 29A:2243–2248.PubMedCrossRefGoogle Scholar
  21. 21.
    Hill, B.T., Whelan, R.D., Hurst, H.C. and McClean, S. (1994). Identification of a distinctive P-glycoprotein-mediated resistance phenotype in human ovarian carcinoma cells after their in vitro exposure to fractionated X-irradiation. Cancer 73:2990–2999.PubMedCrossRefGoogle Scholar
  22. 22.
    Forsgren, S., Franzén, L., Funegård, U., Gustafsson, H. and Henriksson, R. (1992). Bilateral irradiation of head and neck induces an enhanced expression of substance P in the parasympathetic innervation of the submandibular gland. Neuroscience 46:233–240.PubMedCrossRefGoogle Scholar
  23. 23.
    Franzén, L., Forsgren, S., Gustafsson, H. and Henriksson, R. (1993). Irradiation-induced effects on the innervation of rat salivary glands: changes in encephalin- and bombesin-like immunoreactivity in ganglionic cells and intraglandular nerve fibers. Cell Tissue Res. 271:529–536.PubMedCrossRefGoogle Scholar
  24. 24.
    Aalto, Y., et al. (1995). Time- and dose-related changes in the expression of substance P in salivary glands in respond to fractionated irradiation. Int. J. Radiat. Oncol. Biol. Phys. 33:297–305.PubMedCrossRefGoogle Scholar
  25. 25.
    Aalto, Y., et al. (1999). Does bombesin-like peptide mediate radiation-induced anorexia and satiety? Acta Oncol. 38:1099–1102.PubMedCrossRefGoogle Scholar
  26. 26.
    Aalto, Y., et al. (1998). Enhanced expression of neuropeptides in human breast cancer cell lines following irradiation. Peptides 19:231–239.PubMedCrossRefGoogle Scholar
  27. 27.
    Takamiya, Y., et al. (1997). Murine P-glycoprotein on stromal vessels mediates multidrug resistance in intracerebral human glioma xenografts. Br. J. Cancer 76:445–450.PubMedGoogle Scholar
  28. 28.
    Levin, V.A., Freeman-Dove, W. and Landahl, H.D. (1975). Permeability characteristics of brain adjacent to tumors in rats. Arch. Neurol. 32:785–791.PubMedGoogle Scholar
  29. 29.
    Stewart, D.J. (1994). A critique of the role of blood-brain barrier in the chemotherapy of human brain tumors. J. Neuro-Oncol. 20:121–139.CrossRefGoogle Scholar
  30. 30.
    Ashmore, S., Thomas, D. and Darling, J. (1999). Does P-glycoprotein play a role in clinical resistance of malignant astrocytoma? Anti-Cancer Drugs 10:861–872.PubMedCrossRefGoogle Scholar
  31. 31.
    Remsen, L.G., et al. (1995). Decreased delivery and acute toxicity of cranial irradiation and chemotherapy given with osmotic blood-brain barrier disruption in a rodent model: the issue of sequence. Clin. Cancer Res. 1:731–739.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • U. Andersson
    • 3
  • K. Grankvist
    • 1
  • A. T. Bergenheim
    • 2
  • P. Behnam-Motlagh
    • 3
  • H. Hedman
    • 3
  • R. Henriksson
    • 3
    Email author
  1. 1.Department of Medical Bioscience, Clinical ChemistryUmeå UniversityUmeåSweden
  2. 2.Department of Pharmacology and Clinical Neuroscience, NeurosurgeryUmeå UniversityUmeåSweden
  3. 3.Department of Radiation Sciences, OncologyUmeå UniversityUmeåSweden

Personalised recommendations