Medical Oncology

, Volume 18, Issue 4, pp 243–259 | Cite as

Treatment resistance of solid tumors

Role of hypoxia and anemia
  • Peter VaupelEmail author
  • Oliver Thews
  • Michael Hoeckel


Hypoxia is a characteristic property of locally advanced solid tumors, resulting from an imbalance between the supply and consumption of oxygen. Major pathogenetic mechanisms for the development of hypoxia are (1) structural and functional abnormalities of the tumor microvasculature, (2) increased diffusion distances, and (3) tumor-associated and therapy-induced anemia. The oxygenation status is independent of clinical tumor size, stage, grade, and histopathological type, but is affected by the hemoglobin level. Hypoxia is intensified in anemic patients, especially in tumors with low perfusion rates. Hypoxia and anemia (most probably via worsening of tumor hypoxia) can lead to therapeutic problems, as they make solid tumors resistant to sparsely ionizing radiation and some forms of chemotherapy. In addition to more direct mechanisms involved in the development of therapeutic resistance, there are also indirect machineries that can cause barriers to therapies. These include hypoxia-driven proteome and genome changes and clonal selection. These, in turn, can drive subsequent events that are known to further increase resistance to therapy (in addition to critically affecting long-term prognosis). Treatment resistance in anemic patients can be, at least partially, prevented or overcome by anemia correction, resulting in better locoregional tumor control and overall survival of patients.

Key Words

Tumor hypoxia tumor oxygenation anemia therapeutic resistance radiotherapy chemotherapy malignant progression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaupel, P., Schlenger, K., Knoop, C. and Hoeckel, M. (1991). Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51:3316–3322.PubMedGoogle Scholar
  2. 2.
    Hoeckel, M., Schlenger, K., Knoop, C. and Vaupel, P. (1991). Oxygenation of carcinomas of the uterine cervix: evaluation of computerized O2 tension measurements. Cancer Res. 51:6098–6102.Google Scholar
  3. 3.
    Vaupel, P. and Kelleher, D. K. (eds). (1999). Tumor Hypoxia. Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  4. 4.
    Höckel, M. and Vaupel, P. (2001). Tumor hypoxia: definitions and current clinical, biological and molecular aspects. J. Natl. Cancer Inst. 93:266–276.PubMedCrossRefGoogle Scholar
  5. 5.
    Höckel, M., et al. (1993). Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother. Oncol. 26:45–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Höckel, M., et al. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56:4509–4515.PubMedGoogle Scholar
  7. 7.
    Höckel, M., Schlenger, K., Höckel, S. and Vaupel, P. (1999). Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res. 59:4525–4528.PubMedGoogle Scholar
  8. 8.
    Sundfor, K., Lyng, H. and Rofstad, E. K. (1998). Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br. J. Cancer 78:822–827.PubMedGoogle Scholar
  9. 9.
    Fyles, A. W., et al. (1998). Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother. Oncol. 48:149–156.PubMedCrossRefGoogle Scholar
  10. 10.
    Knocke, T. H., Weitmann, H.-D., Feldmann, H.-J., Selzer, E. and Pötter, S. (1999). Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother. Oncol. 53:99–104.PubMedCrossRefGoogle Scholar
  11. 11.
    Sundfor, K., Lyng, H., Tropé, C. G. and Rofstad, E. K. (2000). Treatment outcome in advanced squamous cell carcinoma of the uterine cervix: relationships to pretreatment tumor oxygenation and vascularization. Radiother. Oncol. 54:101–107.PubMedCrossRefGoogle Scholar
  12. 12.
    Nordsmark, M., Overgaard, M. and Overgaard, J. (1996). Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother. Oncol. 41:31–39.PubMedGoogle Scholar
  13. 13.
    Brizel, D. M., Sibley, G. S., Prosnitz, L. R., Scher, R. L. and Dewhirst, M. W. (1997). Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 38:285–289.PubMedCrossRefGoogle Scholar
  14. 14.
    Stadler, P., et al. (1999). Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 44:749–754.PubMedCrossRefGoogle Scholar
  15. 15.
    Nordsmark, M. and Overgaard, J. (2000). A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother. Oncol. 57:39–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Brizel, D. M., et al. (1996). Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 56:941–943.PubMedGoogle Scholar
  17. 17.
    Rampling, R., Cruickshank, G., Lewis, A. D., Fitzsimmons, S. A. and Workman, P. (1994). Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 29:427–431.PubMedGoogle Scholar
  18. 18.
    Collingridge, D. R., Piepmeier, J. M., Rockwell, S. and Knisely, J. P. S. (1999). Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother. Oncol. 53:127–131.PubMedCrossRefGoogle Scholar
  19. 19.
    Movsas, B., et al. (1999). Hypoxic regions exist in human prostate carcinoma. Urology 53:11–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Movsas, B., et al. (2000). Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age. Cancer 89:2018–2024.PubMedCrossRefGoogle Scholar
  21. 21.
    Aquino-Parsons, C., Green, A. and Minchinton, A. I. (2000). Oxygen tension in primary gynaecological tumours: the influence of carbon dioxide concentration. Radiother. Oncol. 57:45–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Lyng, H., Sundfor, K. and Rofstad, E. K. (2000). Changes in tumor oxygen tension during radiotherapy of uterine cervical cancer: relationships to changes in vascular density, cell density, and frequency of mitosis and apoptosis. Int. J. Radiat. Oncol. Biol. Phys. 46:935–946.PubMedCrossRefGoogle Scholar
  23. 23.
    Dunst, J., Hänsgen, G., Lautenschläger, C., Füchsel, G. and Becker, A. (1999). Oxygenation of cervical cancers during radiotherapy and radiotherapy + cis-retinoic acid/interferon. Int. J. Radiat. Oncol. Biol. Phys. 43:367–373.PubMedCrossRefGoogle Scholar
  24. 24.
    Becker, A., et al. (2000). Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 46:459–466.PubMedCrossRefGoogle Scholar
  25. 25.
    Lartigau, E., et al. (1997). Intratumoral oxygen tension in metastatic melanoma. Melanoma Res. 7:400–406.PubMedCrossRefGoogle Scholar
  26. 26.
    Becker, A., et al. (1998). Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 42:35–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Vaupel, P. (2001). Durchblutung und Oxygenierungsstatus von Kopf-Hals-Tumoren, in Klinik des Rezidivtumors im Kopf-Hals-Bereich. Grundlagen — Diagnostik — Therapie. (H. D., Böttcher, T. G., Wendt, M. Henke, hrsg), pp 7–23. Zuckschwerdt, München.Google Scholar
  28. 28.
    Haensgen, G., et al. (2001). Tumor hypoxia, p53, and prognosis in cervical cancers. Int. J. Radiat. Oncol. Biol. Phys. 50:865–872.PubMedCrossRefGoogle Scholar
  29. 29.
    Nordsmark, M., et al. (2001). Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 49:581–586.PubMedCrossRefGoogle Scholar
  30. 30.
    Evans, S. M., et al. (2001). Hypoxia in human intraperitoneal and extremity sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 49:587–596.PubMedCrossRefGoogle Scholar
  31. 31.
    Nordsmark, M., et al. (2001). Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br. J. Cancer 84:1070–1075.PubMedCrossRefGoogle Scholar
  32. 32.
    Vaupel, P., Kelleher, D. K. and Höckel, M. (2001). Oxgenation status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin. Oncol. 28(Suppl. 8):29–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Vaupel, P. and Höckel, M. (2001). Hypoxie beim Zervixkarzinom: Pathogenese, Charakterisierung und biologische/klinische Konsequenzen. Zentralbl. Gynakol. 123:192–197.PubMedCrossRefGoogle Scholar
  34. 34.
    Vaupel, P., Kallinowski, F. and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 49:6449–6465.PubMedGoogle Scholar
  35. 35.
    Vaupel, P. W. (1994). Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Ernst Schering Research Foundation Lecture 23.Google Scholar
  36. 36.
    Lyng, H., et al. (2001). Intra- and intertumor heterogeneity in blood perfusion of human cervical cancer before treatment and after radiotherapy. Int. J. Cancer 96:182–190.PubMedCrossRefGoogle Scholar
  37. 37.
    Jelkmann, W. (2000). Use of recombinant human erythropoietin as an antianemic and performance enhancing drug. Curr. Pharm. Biotech. 1:1–31.Google Scholar
  38. 38.
    Nowrousian, M. R. (1998). Recombinant human erythropoietin in the treatment of cancer-related or chemotherapy-induced anaemia in patients with solid tumors. Med. Oncol. 15(Suppl. 1):S19-S28.PubMedGoogle Scholar
  39. 39.
    Bron, D., Meuleman, N. and Mascaux, C. (2001). Biological basis of anemia. Semin. Oncol. 28(Suppl. 8):1–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Ludwig, H. and Fritze, E. (1998). Anemia in cancer patients. Semin. Oncol. 25:2–6.PubMedGoogle Scholar
  41. 41.
    Groopman, J. E. and Itri, L. M. (1999). Chemotherapy-induced anemia in adults: incidence and treatment. J. Natl. Cancer Inst. 91:1616–1634.PubMedCrossRefGoogle Scholar
  42. 42.
    Groebe, K. (1999). Impact of anemia on the oxygenation status of tumors: a theoretical study, in Tumor Hypoxia. (P. Vaupel and D. K. Kelleher, eds), pp 75–82, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  43. 43.
    Kelleher, D. K., Matthiensen, U., Thews, O. and Vaupel, P. (1996). Blood flow, oxygenation, and bioenergetic status of tumors after erythropoietin treatment in normal and anemic rats. Cancer Res. 56:4728–4734.PubMedGoogle Scholar
  44. 44.
    Kelleher, D. K., Matthiensen, U., Thews, O. and Vaupel, P. (1995). Tumor oxygenation in anemic rats: effects of erythropoietin treatment versus red blood cell transfusion. Acta Oncol. 34:379–384.PubMedGoogle Scholar
  45. 45.
    Vaupel, P., Thews, O., Kelleher, D. K. and Hoeckel, M. (1998). Oxygenation of human tumors: the Mainz experience. Strahlenther. Onkol. 174(Suppl. IV):6–12.PubMedGoogle Scholar
  46. 46.
    Thews, O. and Vaupel, P. (2001). Tumour hypoxia and anaemia: implications for the outcome of radiotherapy and chemotherapy. Focus Anaemia Cancer 2:59–65.Google Scholar
  47. 47.
    Brizel, D. M. (1999). Human tumor oxygenation: The Duke University Medical Center experience, in Tumor Hypoxia (P. Vaupel and D. K. Kelleher, eds), pp 29–38, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  48. 48.
    Dunst, J., Feldmann, H. J., Becker, A., Stadler, P., Hänsgen, G. and Molls, M. (1999). Oxygenation of human tumors: the Munich/Halle experience, in Tumor Hypoxia. (P. Vaupel and D. K. Kelleher, eds), pp 39–46, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  49. 49.
    Durand, R. E. (1991). Keynote address: the influence of microenvironmental factors on the activity of radiation and drugs. Int. J. Radiat. Oncol. Biol. Phys. 20:253–258.PubMedGoogle Scholar
  50. 50.
    Durand, R. E. (1994). The influence of microenvironmental factors during cancer therapy. In Vivo 8:691–702.PubMedGoogle Scholar
  51. 51.
    Teicher, B. A. (ed). (1993). Drug Resistance in Oncology. Marcel Dekker, New York.Google Scholar
  52. 52.
    Teicher, B. A. (1994). Hypoxia and drug resistance. Cancer Metastasis 13:139–168.CrossRefGoogle Scholar
  53. 53.
    Teicher, B. A. (1995). Physiologic mechanisms of therapeutic resistance. Hematol. Oncol. Clin. North Am. 9:475–506.PubMedGoogle Scholar
  54. 54.
    Vaupel, P. (1997). The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia. Klin. Pädiatr. 209:243–249.PubMedCrossRefGoogle Scholar
  55. 55.
    Chaplin, D. J., Horsman, M. R., Trotter, M. J. and Siemann, D. W. (2000). Therapeutic significance of microenvironmental factors. in Blood Perfusion and Microenvironment of Human Tumors. Implications for Clinical Radiooncology (M. Molls and P. Vaupel, eds), pp 133–134, Springer-Verlag, Berlin.Google Scholar
  56. 56.
    Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. and Scott, O. C. A. (1953). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26:638–648.PubMedCrossRefGoogle Scholar
  57. 57.
    Evans, J. C. and Bergsjö, P. (1965). The influence of anemia on the results of radiotherapy in carcinoma of the cervix. Radiology 84:709–717.PubMedGoogle Scholar
  58. 58.
    Bush, R. S. (1986). The significance of anemia in clinical radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 12:2047–2050.PubMedGoogle Scholar
  59. 59.
    Frommhold, H., Guttenberger, R. and Henke, M. (1998). The impact of blood hemoglobin content on the outcome of radiotherapy. The Freiburg experience. Strahlenther. Onkol. 174(Suppl. 4):31–34.PubMedGoogle Scholar
  60. 60.
    Henke, M., Momm, F. and Guttenberger, R. (1999). Erythropoietin for patients undergoing radiotherapy: the Freiburg experience, in Tumor Hypoxia (P. Vaupel and D. K. Kelleher, eds), pp 91–97, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  61. 61.
    Grau, C. and Overgaard, J. (2000). Significance of hemoglobin concentration for treatment outcome, in Blood Perfusion and Microenvironment of Human Tumors. Implications for Clinical Radiooncology. (M. Molls and P. Vaupel, eds), pp 101–112, Springer-Verlag, Berlin.Google Scholar
  62. 62.
    Kumar, P. (2000). Tumor hypoxia and anemia: Impact on the efficacy of radiation therapy. Semin. Hematol. 37:4–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Henke, M., Bechtold, C., Momm, F., Dörr, W. and Guttenberger, R. (2000). Blood hemoglobin level may affect radiosensitivity—preliminary results on acutely reacting normal tissues. Int. J. Radiat. Oncol. Biol. Phys. 48:339–345.PubMedCrossRefGoogle Scholar
  64. 64.
    Dubray, B., et al. (1996). Anemia is associated with lower local-regional control and survival after radiation therapy for head and neck cancer: a prospective study. Radiology 201:553–558.PubMedGoogle Scholar
  65. 65.
    Grant, D. G., Hussain, A. and Hurman, D. (1999). Pretreatment anaemia alters outcome in early squamous cell carcinoma of the larynx treated by radical radiotherapy. J. Laryngol. Otol. 113:829–833.PubMedGoogle Scholar
  66. 66.
    Girinski, T., et al. (1989). Prognostic value of hemoglobin concentrations and blood transfusions in advanced carcinoma of the cervix treated by radiation therapy: results of a retrospective study of 386 patients. Int. J. Radiat. Oncol. Biol. Phys. 16:37–41.PubMedGoogle Scholar
  67. 67.
    Rudat, V., et al. (1999). Prognostic impact of total tumor volume and hemoglobin concentration on the outcome of patients with advanced head and neck cancer after concomitant boost radiochemotherapy. Radiother. Oncol. 53:119–125.PubMedCrossRefGoogle Scholar
  68. 68.
    Thomas, G. (2001). The effect of hemoglobin level on radiotherapy outcomes: the Canadian experience. Semin. Oncol. 28(Suppl. 8):60–65.PubMedCrossRefGoogle Scholar
  69. 69.
    Glaser, C., et al. (2001). Impact of hemoglobin level and use of recombinant erythropoietin on efficacy of preoperative chemoradiation therapy for squamous cell carcinoma of the oral cavity and oropharynx. Int. J. Radiat. Oncol. Biol. Phys. 50:705–715.PubMedCrossRefGoogle Scholar
  70. 70.
    Dietz, A., et al. (2000). Prognostischer Stellenwert des Hämoglobinwertes vor primärer Radiochemotherapy von Kopf-Hals-Karzinomen. HNO 48:655–664.PubMedCrossRefGoogle Scholar
  71. 71.
    Lutterbach, J. and Guttenberger, R. (2000). Anemia is associated with decreased local control of surgically treated squamous cell carcinomas of the glottic larynx. Int. J. Radiat. Oncol. Biol. Phys. 48:1345–1350.PubMedCrossRefGoogle Scholar
  72. 72.
    Thews, O., Koenig, R., Kelleher, D. K., Kutzner, J. and Vaupel, P. (1998). Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy-induced anaemia. Br. J. Cancer 78:752–756.PubMedGoogle Scholar
  73. 73.
    Kelleher, D. K., Thews, O. and Vaupel, P. (1999). Modulation of tumor oxygenation and radiosensitivity by erythropoietin, in Tumor Hypoxia (P. Vaupel and D. K. Kelleher, eds), pp 83–90, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  74. 74.
    Lavey, R. S. (1999). Clinical trial experience using erythropoietin during radiation therapy. in Tumor Hypoxia (P. Vaupel and D. K. Kelleher, eds), pp 99–105, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  75. 75.
    Teicher, B. A., Holden, S. A., Al-Achi, A. and Herman, T. S. (1990). Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSall murine fibrosarcoma. Cancer Res. 50:3339–3344.PubMedGoogle Scholar
  76. 76.
    Walker, L. J., Craig, R. B., Harris, A. L. and Hickson, I. D. (1994). A role for the human DNA-repair enzyme HAP1 in cellular-protection against DNA-damaging agents and hypoxic stress. Nucleic Acids Res. 22:4884–4889.PubMedCrossRefGoogle Scholar
  77. 77.
    Chabner, B., Allegra, C. J., Curt, G. A. and Calabresi, P. (1996). Antineoplastic agents, in Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 9th ed., pp 1233–1287, McGraw-Hill, New York.Google Scholar
  78. 78.
    Sakata, K., et al. (1991). Hypoxia-induced drug resistance: comparison to P-glycoprotein-associated drug resistance. Br. J. Cancer 64:809–814.PubMedGoogle Scholar
  79. 79.
    Hickman, J. A., Potten, C. S., Merritt, A. J. and Fisher, T. C. (1994). Apoptosis and cancer chemotherapy. Philos. Trans. R. Soc. B 345:319–325.CrossRefGoogle Scholar
  80. 80.
    Thews, O., Kelleher, D. K. and Vaupel, P. (2001). Erythropoietin restores the anemia-induced reduction in cyclophosphamide cytotoxicity in rat tumors. Cancer Res. 61:1358–1361.PubMedGoogle Scholar
  81. 81.
    Silver, D. F. and Piver, M. S. (1999). Effects of recombinant human erythropoietin on the antitumor effect of cisplatin in SCID mice bearing human ovarian cancer: a possible oxygen effect. Gynecol. Oncol. 73:280–284.PubMedCrossRefGoogle Scholar
  82. 82.
    Freitas, I. and Baronzio, G. F. (1991). Tumor hypoxia, reoxygenation and oxygenation strategies: possible role in photodynamic therapy. J. Photochem. Photobiol. B: Biol. 11:3–30.CrossRefGoogle Scholar
  83. 83.
    Henderson, B. W. and Fingar, V. H. (1987). Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res. 47:3110–3114.PubMedGoogle Scholar
  84. 84.
    Moan, J. and Sommer, S. (1985). Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. Cancer Res. 45:1608–1610.PubMedGoogle Scholar
  85. 85.
    Mitchell, J. B., et al. (1985). Oxygen dependence of hematoporphyrin derivative-induced photo-inactivation of Chinese hamster cells. Cancer Res. 45:2008–2011.PubMedGoogle Scholar
  86. 86.
    Chapman, J. D., et al. (1991). Oxygen dependency of tumor cell killing in vitro by light-activated Photofrin II. Radiat. Res. 126:73–79.PubMedCrossRefGoogle Scholar
  87. 87.
    Vaupel, P. and Hoeckel, M. (2002). Tumor hypoxia and therapeutic resistance, in Recombinant Human Erythropoietin (rhEPO) in Clincial Oncology (M. R. Nowrousian, ed), Springer-Verlag, Berlin, in press.Google Scholar
  88. 88.
    Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit. Rev. Biochem. Mol. Biol. 35:71–103.PubMedCrossRefGoogle Scholar
  89. 89.
    Semenza, G. L. (2000). HIF-1: mediator of physiological and pathophysiological response to hypoxia. J. Appl. Physiol. 88:1474–1480.PubMedGoogle Scholar
  90. 90.
    Dachs, G. U. and Tozer, G. M. (2000). Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur. J. Cancer 36:1649–1660.PubMedCrossRefGoogle Scholar
  91. 91.
    Giaccia, A. J. (1996). Hypoxic stress proteins: survival of the fittest. Semin. Radiat. Oncol. 6:46–58.PubMedCrossRefGoogle Scholar
  92. 92.
    Laderoute, K. R., Grant, T. D., Murphy, B. J. and Sutherland, R. M. (1992). Enhanced epidermal growth factor receptor synthesis in human squamous carcinoma cells exposed to low levels of oxygen. Int. J. Cancer 52:428–432.PubMedCrossRefGoogle Scholar
  93. 93.
    Sutherland, R. M. (1998). Tumor hypoxia and gene expression. Implications for malignant progression and therapy. Acta Oncol. 37:567–574.PubMedCrossRefGoogle Scholar
  94. 94.
    Cheng, K. C. and Loeb, L. A. (1993). Genomic instability and tumor progression: mechanistic considerations. Adv. Cancer Res. 60:121–156.PubMedCrossRefGoogle Scholar
  95. 95.
    De Jaeger, K., Kavanagh, M.-C. and Hill, R. P. (2001). Relationship of hypoxia to metastatic ability in rodent tumours. Br. J. Cancer 84:1280–1285.PubMedCrossRefGoogle Scholar
  96. 96.
    Graeber, T. G., et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91.PubMedCrossRefGoogle Scholar
  97. 97.
    Kim, C. Y., et al. (1997). Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res. 57:4200–4204.PubMedGoogle Scholar
  98. 98.
    Reynolds, T. Y., Rockwell, S. and Glazer, P. M. (1996). Genetic instability induced by the tumor microenvironment. Cancer Res. 56:5754–5757.PubMedGoogle Scholar
  99. 99.
    Rofstad, E. K. (2000). Microenvironment-induced cancer metastasis. Int. J. Radiat. Biol. 76:589–605.PubMedCrossRefGoogle Scholar
  100. 100.
    Höckel, M., Schlenger K., Höckel, S. and Vaupel, P. (1999). Association between tumor hypoxia and malignant progression: the clinical evidence in cancer of the uterine cervix, in Tumor Hypoxia (P. Vaupel and D. K. Kelleher, eds), pp 65–74, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  101. 101.
    Höckel, M. and Vaupel, P. (2001). Biological consequences of tumor hypoxia. Semin. Oncol. 28(Suppl. 8):36–41.PubMedCrossRefGoogle Scholar
  102. 102.
    Rofstad, E. K. and Maseide, K. (1999). Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumours. Int. J. Radiat. Biol. 75:1377–1393.PubMedCrossRefGoogle Scholar
  103. 103.
    Thews, O., Kelleher, D. K. and Vaupel, P. (2001). Dynamics of tumor oxygenation and red blood cell flux in response to inspiratory hyperoxia combined with different levels of inspiratory hypercapnia. Radiother. Oncol. in press.Google Scholar
  104. 104.
    Aebersold, D. M., et al. (2001). Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 61:2911–2916.PubMedGoogle Scholar
  105. 105.
    Ratcliffe, P. J., Pugh, C. W. and Maxwell, P. H. (2000). Targeting tumors through the HIF system. Nature Med. 6:1315–1316.PubMedCrossRefGoogle Scholar
  106. 106.
    Kung, A. L., Wang, S., Klico, J. M., Kaelin, W. G. and Livingston, D. M. (2000). Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nature Med. 6:1335–1340.PubMedCrossRefGoogle Scholar
  107. 107.
    Caro, J. J., Salas, M., Ward, A. and Goss, G. Anemia as an independent prognostic factor for survival in patients with cancer. Cancer 91: 2214–2221.Google Scholar
  108. 108.
    Dunst, J. (2001). The use of epoietin alfa to increase and maintain hemoglobin levels during radiotherapy. Semin. Oncol. 28(Suppl. 8):42–48.PubMedCrossRefGoogle Scholar
  109. 109.
    Littlewood, T. J. (2001). The impact of hemoglobin levels on treatment outcomes in patients with cancer. Semin. Oncol. 28(Suppl. 8):49–53.PubMedCrossRefGoogle Scholar
  110. 110.
    Wagner, W., et al. (2000). Prognostic value of hemoglobin concentrations in patients with advanced head and neck cancer treated with combined radio-chemotherapy and surgery. Strahlenther. Onkol. 176:73–80.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Department of Obstetrics & GynecologyUniversity of LeipzigLeipzigGermany
  2. 2.Institute of Physiology & PathophysiologyUniversity of MainzMainzGermany

Personalised recommendations