Advertisement

Molecular Neurobiology

, Volume 34, Issue 3, pp 205–219 | Cite as

The growing role of mTOR in neuronal development and plasticity

  • Jacek Jaworski
  • Morgan ShengEmail author
Article

Abstract

Neuronal development and synaptic plasticity are highly regulated processes in which protein kinases play a key role. Recently, increasing attention has been paid to a serine/threonine protein kinase called mammalian target of rapamycin (mTOR) that has well-known functions in cell proliferation and growth. In neuronal cells, mTOR is implicated in multiple processes, including transcription, ubiquitin-dependent proteolysis, and microtubule and actin dynamics, all of which are crucial for neuronal development and long-term modification of synaptic strength. The aim of this article is to present our current understanding of mTOR functions in axon guidance, dendritic tree development, formation of dendritic spines, and in several forms of long-term synaptic plasticity. We also aim to present explanation for the mTOR effects on neurons at the level of mTOR-regulated genes and proteins.

Index Entries

mTOR rapamycin neuronal development synaptic plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, G. Y., Deisseroth, K., and Tsien, R. W. (2001) Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151–158.PubMedGoogle Scholar
  2. 2.
    Adams, J. P., and Sweatt, J. D. (2002) Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163.PubMedGoogle Scholar
  3. 3.
    Atwal, J. K., Massie, B., Miller, F. D., and Kaplan, D. R. (2000) The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277.PubMedGoogle Scholar
  4. 4.
    Sanna, P. P., Cammalleri, M., Berton, F., et al. (2002) Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22, 3359–3365.PubMedGoogle Scholar
  5. 5.
    Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C., and Sheng, M. (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci. 25, 11,300–11,312.Google Scholar
  6. 6.
    Kumar, V., Zhang, M. X., Swank, M. W., Kunz, J., and Wu, G. Y. (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J. Neurosci. 25, 11,288–11,299.Google Scholar
  7. 7.
    Fink, C. C., Bayer, K. U., Myers, J. W., Ferrell, J. E., Jr., Schulman, H., and Meyer, T. (2003) Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39, 283–297.PubMedGoogle Scholar
  8. 8.
    Jourdain, P., Fukunaga, K., and Muller, D. (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J. Neurosci. 23, 10,645–10,649.Google Scholar
  9. 9.
    Colbran, R. J., and Brown, A. M. (2004) Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr. Opin. Neurobiol. 14, 318–327.PubMedGoogle Scholar
  10. 10.
    Redmond, L., Kashani, A. H., and Ghosh, A. (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999–1010.PubMedGoogle Scholar
  11. 11.
    Wu, G. Y., and Cline, H. T. (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226.PubMedGoogle Scholar
  12. 12.
    Kwon, C. H., Zhu, X., Zhang, J., and Baker, S. J. (2003) mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA 100, 12,923–12,928.Google Scholar
  13. 13.
    Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H., and Sabatini, D. M. (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. USA 95, 1432–1437.PubMedGoogle Scholar
  14. 14.
    Xie, M. W., Jin, F., Hwang, H., et al. (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc. Natl. Acad. Sci. USA 102, 7215–7220.PubMedGoogle Scholar
  15. 15.
    Chan, T. F., Carvalho, J., Riles, L., and Zheng, X. F. (2000) A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl. Acad. Sci. USA 97, 13,227–13,232.Google Scholar
  16. 16.
    Guertin, D. A., Guntur, K. V., Bell, G. W., Thoreen, C. C., and Sabatini, D. M. (2006) Functional genomics identifies TOR-regulated genes that control growth and division. Curr. Biol. 16, 958–970.PubMedGoogle Scholar
  17. 17.
    Jacinto, E., and Hall, M. N. (2003) Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4, 117–126.PubMedGoogle Scholar
  18. 18.
    Sarbassov dos, D., Ali, S. M., and Sabatini, D. M. (2005) Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603.PubMedGoogle Scholar
  19. 19.
    Schmelzle, T., and Hall, M. N. (2000). TOR, a central controller of cell growth. Cell 103, 253–262.PubMedGoogle Scholar
  20. 20.
    Harris, T. E., and Lawrence, J. C., Jr. (2003) TOR signaling. Sci. STKE 2003, re15.PubMedGoogle Scholar
  21. 21.
    Lenz, G., and Avruch, J. (2005) Glutamatergic regulation of the p70S6 kinase in primary mouse neurons. J. Biol. Chem. 280, 38121–38124.PubMedGoogle Scholar
  22. 22.
    Cammalleri, M., Lutjens, R., Berton, F., et al. (2003) Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc. Natl. Acad. Sci. USA 100, 14,368–14,373.Google Scholar
  23. 23.
    Hou, L., and Klann, E. (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 24, 6352–6361.PubMedGoogle Scholar
  24. 24.
    Garami, A., Zwartkruis, F. J., Nobukuni, T., et al. (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466.PubMedGoogle Scholar
  25. 25.
    Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C., and Blenis, J. (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268.PubMedGoogle Scholar
  26. 26.
    Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J., and Cantley, L. C. (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162.PubMedGoogle Scholar
  27. 27.
    Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A., and Chen, J. (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945.PubMedGoogle Scholar
  28. 28.
    Tee, A. R., Anjum, R., and Blenis, J. (2003) Inactivation of the tuberous sclerosis complex-1 and-2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and-independent phosphorylation of tuberin. J. Biol. Chem. 278, 37,288–37,296.Google Scholar
  29. 29.
    Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P. P. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193.PubMedGoogle Scholar
  30. 30.
    Kimura, N., Tokunaga, C., Dalal, S., et al. (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8, 65–79.PubMedGoogle Scholar
  31. 31.
    Sarbassov, D. D., Ali, S. M., Kim, D. H., et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol 14, 1296–1302.PubMedGoogle Scholar
  32. 32.
    Hara, K., Maruki, Y., Long, X., et al. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 100, 177–189.Google Scholar
  33. 33.
    Kim, D. H., sarbassov, D. D., Ali, S. et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175.PubMedGoogle Scholar
  34. 34.
    Hara, K., Yonezawa, K., Kozlowski, M. T., et al. (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272, 26,457–26,463.Google Scholar
  35. 35.
    Jefferies, H. B., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B., and Thomas, G. (1997) Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704.PubMedGoogle Scholar
  36. 36.
    Meyuhas, O. (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 267, 6321–6330.PubMedGoogle Scholar
  37. 37.
    Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N., and Sonenberg, N. (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15, 658–664.PubMedGoogle Scholar
  38. 38.
    Peterson, R. T., Desai, B. N., Hardwick, J. S., and Schreiber, S. L. (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc. Natl. Acad. Sci. USA 96, 4438–4442.PubMedGoogle Scholar
  39. 39.
    Choi, J. H., Bertram, P. G., Drenan, R., Carvalho, J., Zhou, H. H., and Zheng, X. F. (2002) The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3, 988–994.PubMedGoogle Scholar
  40. 40.
    Redpath, N. T., Foulstone, E. J., and Proud, C. G. (1996) Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J. 15, 2291–2297.PubMedGoogle Scholar
  41. 41.
    Azpiazu, I., Saltiel, A. R., DePaoli-Roach, A. A., and Lawrence, J. C. (1996) Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. J. Biol. Chem. 271, 5033–5039.PubMedGoogle Scholar
  42. 42.
    Shepherd, P. R., Nave, B. T., and Siddle, K. (1995) Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem. J. 305 (Pt 1), 25–28.PubMedGoogle Scholar
  43. 43.
    Hudson, C. C., Liu, M., Chiang, G. G., et al. (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7004–7014.PubMedGoogle Scholar
  44. 44.
    Jacinto, E., Loewith, R., Schmidt, A., et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128.PubMedGoogle Scholar
  45. 45.
    Sarbassov dos, D., Ali, S. M., Sengupta, S., et al. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168.PubMedGoogle Scholar
  46. 46.
    Bassell, G. J., Zhang, H., Byrd, A. L., et al. (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265.PubMedGoogle Scholar
  47. 47.
    Martin, K. C. (2004) Local protein synthesis during axon guidance and synaptic plasticity. Curr. Opin. Neurobiol. 14, 305–310.PubMedGoogle Scholar
  48. 48.
    Piper, M., Anderson, R., Dwivedy, A., et al. (2006) Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49, 215–228.PubMedGoogle Scholar
  49. 49.
    Piper, M., and Holt, C. (2004) RNA translation in axons. Annu. Rev. Cell Dev. Biol. 20, 505–523.PubMedGoogle Scholar
  50. 50.
    Campbell, D. S., and Holt, C. E. (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026.PubMedGoogle Scholar
  51. 51.
    Abe, H., Obinata, T., Minamide, L. S., and Bamburg, J. R. (1996) Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J. Cell Biol. 132, 871–885.PubMedGoogle Scholar
  52. 52.
    Willis, D. E., and Twiss, J. L. (2006) The evolving roles of axonally synthesized proteins in regeneration. Curr. Opin. Neurobiol. 16, 111–118.PubMedGoogle Scholar
  53. 53.
    Verma, P., Chierzi, S., Codd, A. M., et al. (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331–342.PubMedGoogle Scholar
  54. 54.
    Selzer, M. E. (2003) Promotion of axonal regeneration in the injured CNS. Lancet Neurol. 2, 157–166.PubMedGoogle Scholar
  55. 55.
    Chuckowree, J. A., Dickson, T. C., and Vickers, J. C. (2004) Intrinsic regenerative ability of mature CNS neurons. Neuroscientist 10, 280–285.PubMedGoogle Scholar
  56. 56.
    Wessells, N. K., Johnson, S. R., and Nuttall, R. P. (1978) Axon initiation and growth cone regeneration in cultured motor neurons. Exp. Cell Res. 117, 335–345.PubMedGoogle Scholar
  57. 57.
    Blackmore, M., and Letourneau, P. C. (2006) Changes within maturing neurons limit axonal regeneration in the developing spinal cord. J. Neurobiol. 66, 348–360.PubMedGoogle Scholar
  58. 58.
    Sahly, I., Khoutorsky, A., Erez, H., Prager-Khoutorsky, M., and Spira, M. E. (2006) Online confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy. J. Comp. Neurol. 494, 705–720.PubMedGoogle Scholar
  59. 59.
    Jan, Y. N., and Jan, L. Y. (2003) The control of dendrite development. Neuron 40, 229–242.PubMedGoogle Scholar
  60. 60.
    McAllister, A. K. (2000) Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10, 963–973.PubMedGoogle Scholar
  61. 61.
    Wong, R. O., and Ghosh, A. (2002) Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812.PubMedGoogle Scholar
  62. 62.
    Miller, F. D., and Kaplan, D. R. (2003) Signaling mechanisms underlying dendrite formation. Curr. Opin. Neurobiol. 13, 391–398.PubMedGoogle Scholar
  63. 63.
    Wirth, M. J., Brun, A., Grabert, J., Patz, S., and Wahle, P. (2003) Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development 130, 5827–5838.PubMedGoogle Scholar
  64. 64.
    Whitford, K. L., Marillat, V., Stein, E., Goodman, C. S., Tessier-Lavigne, M., Chedotal, A., and Ghosh, A. (2002) Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 33, 47–61.PubMedGoogle Scholar
  65. 65.
    Polleux, F., Morrow, T., and Ghosh, A. (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573.PubMedGoogle Scholar
  66. 66.
    Horch, H. W., and Katz, L. C. (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184.PubMedGoogle Scholar
  67. 67.
    Yu, X., and Malenka, R. C. (2003) Beta-catenin is critical for dendritic morphogenesis. Nat. Neurosci. 6, 1169–1177.PubMedGoogle Scholar
  68. 68.
    Redmond, L., Oh, S. R., Hicks, C., Weinmaster, G., and Ghosh, A. (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40.PubMedGoogle Scholar
  69. 69.
    Lohmann, C., Myhr, K. L., and Wong, R. O. (2002) Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181.PubMedGoogle Scholar
  70. 70.
    Bjorkblom, B., Ostman, N., Hongisto, V., et al. (2005) Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J. Neurosci. 25, 6350–6361.PubMedGoogle Scholar
  71. 71.
    Wayman, G. A., Impey, S., Marks, D., et al. (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50, 897–909.PubMedGoogle Scholar
  72. 72.
    Nakayama, A. Y., Harms, M. B., and Luo, L. (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338.PubMedGoogle Scholar
  73. 73.
    Hayashi, K., Ohshima, T., and Mikoshiba, K. (2002) Pak1 is involved in dendrite initiation as a downstream effector of Rac1 in cortical neurons. Mol. Cell Neurosci. 20, 579–594.PubMedGoogle Scholar
  74. 74.
    Sholl, D. A. (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87, 387–406.PubMedGoogle Scholar
  75. 75.
    Kwon, C. H., Luikart, B. W., Powell, C. M., et al. (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388.PubMedGoogle Scholar
  76. 76.
    Dijkhuizen, P. A., and Ghosh, A. (2005) BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. J. Neurobiol. 62, 278–288.PubMedGoogle Scholar
  77. 77.
    Hering, H., and Sheng, M. (2001) Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 2, 880–888.PubMedGoogle Scholar
  78. 78.
    Yuste, R., and Bonhoeffer, T. (2004) Genesis of dendritic spines: insights from ultrastructrual and imaging studies. Nat. Rev. Neurosci. 5, 24–34.PubMedGoogle Scholar
  79. 79.
    Tada, T., and Sheng, M. (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101.PubMedGoogle Scholar
  80. 80.
    Casadio, A., Martin, K. C., Giustetto, M., et al. (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237.PubMedGoogle Scholar
  81. 81.
    Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., Kwiatkowski, D. J., and Sabatini, B. L. (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734.PubMedGoogle Scholar
  82. 82.
    Kelleher, R. J., 3rd, Govindarajan, A., and Tonegawa, S. (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 59–73.PubMedGoogle Scholar
  83. 83.
    Squire, L. R., and Davis, H. P. (1981) The pharmacology of memory: a neurobiological perspective. Annu. Rev. Pharmacol. Toxicol. 21, 323–356.PubMedGoogle Scholar
  84. 84.
    Beaumont, V., Zhong, N., Fletcher, R., Froemke, R. C., and Zucker, R. S. (2001) Phosphorylation and local presynaptic protein synthesis in calcium- and calcineurin-dependent induction of crayfish long-term facilitation. Neuron 32, 489–501PubMedGoogle Scholar
  85. 85.
    Tang, S. J., Reis, G., Kang, H., Gingras, A. C., Sonenberg, N., and Schuman, E. M. (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. natl. Acad. Sci. USA 99, 467–472.PubMedGoogle Scholar
  86. 86.
    Vickers, C. A., Dickson, K. S., and Wyllie, D. J. (2005) Induction and maintenance of latephase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J. Physiol. 568, 803–813.PubMedGoogle Scholar
  87. 87.
    Cracco, J. B., Serrano, P., Moskowitz, S. I., Bergold, P. J., and Sacktor, T. C. (2005) Protein synthesis-dependent LTP in isolated dendrites of CA1 pyramidal cells. Hippocampus 15, 551–556.PubMedGoogle Scholar
  88. 88.
    Wang, Y., Barbaro, M. F., and Baraban, S. C. (2006) A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci. Lett. 401, 35–39.PubMedGoogle Scholar
  89. 89.
    Job, C., and Eberwine, J. (2001) Identification of sites for exponential translation in living dendrites. Proc. Natl. Acad. Sci. USA 98, 13037–13042.PubMedGoogle Scholar
  90. 90.
    Huber, K. M., Roder, J. C., and Bear, M. F. (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86, 321–325.PubMedGoogle Scholar
  91. 91.
    Banko, J. L., Hou, L., Poulin, F., Sonenberg, N., and Klann, E. (2006) Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 26, 2167–2173.PubMedGoogle Scholar
  92. 92.
    Banko, J. L., Poulin, F., Hou, L., DeMaria, C. T., Sonenberg, N., and Klann, E. (2005) The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590.PubMedGoogle Scholar
  93. 93.
    Zho, W. M., You, J. L., Huang, C. C., and Hsu, K. S. (2002) The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J. Neurosci. 22, 8838–8849.PubMedGoogle Scholar
  94. 94.
    Malenka, R. C. (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538.PubMedGoogle Scholar
  95. 95.
    Tischmeyer, W., Schicknick, H., Kraus, M., et al. (2003) Rapamycin-sensitive signalling in longterm consolidation of auditory cortex-dependent memory. Eur. J. Neurosci. 18, 942–950.PubMedGoogle Scholar
  96. 96.
    Lee, C. C., Huang, C. C., Wu, M. Y., and Hsu, K. S. (2005) Insulin stimulates postsynaptic density-95 protein translation via the phospho-inositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J. Biol. Chem. 280, 18543–18550.PubMedGoogle Scholar
  97. 97.
    Takei, N., Inamura, N., Kawamura, M., et al. (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci. 24, 9760–9769.PubMedGoogle Scholar
  98. 98.
    Kraut, R., Menon, K., and Zinn, K. (2001) A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr. Biol. 11, 417–430.PubMedGoogle Scholar
  99. 99.
    Schratt, G. M., Nigh, E. A., Chen, W. G., Hu, L., and Greenberg, M. E. (2004) BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. J. Neurosci. 24, 7366–7377.PubMedGoogle Scholar
  100. 100.
    Schratt, G. M., Tuebing, F., Nigh, E. A., et al. (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289.PubMedGoogle Scholar
  101. 101.
    Yang, N., Higuchi, O., Ohashi, K., et al. (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812.PubMedGoogle Scholar
  102. 102.
    Meng, Y., Zhang, Y., Tregoubov, V., et al. (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133.PubMedGoogle Scholar
  103. 103.
    Zhou, Q., Homma, K. J., and Poo, M. M. (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757.PubMedGoogle Scholar
  104. 104.
    Guzowski, J. F., Lyford, G. L., Stevenson, G. D., et al. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001.PubMedGoogle Scholar
  105. 105.
    Vazquez, L. E., Chen, H. J., Sokolova, I., Knuesel, I., and Kennedy, M. B. (2004) SynGAP regulates spine formation. J. Neurosci. 24, 8862–8872.PubMedGoogle Scholar
  106. 106.
    Akama, K. T., and McEwen, B. S. (2003) Estrogen stimulates postsynaptic density-95 rapid protein synthesis via the Akt/protein kinase B pathway. J. Neurosci. 23, 2333–2339.PubMedGoogle Scholar
  107. 107.
    El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A., and Bredt, D. S. (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368.PubMedGoogle Scholar
  108. 108.
    Fagiolini, M., Katagiri, H., Miyamoto, H., et al. (2003) Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc. Natl. Acad. Sci. USA 100, 2854–2859.PubMedGoogle Scholar
  109. 109.
    Yao, W. D., Gainetdinov, R. R., Arbuckle, M. I., et al. (2004) Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41, 625–638.PubMedGoogle Scholar
  110. 110.
    Onda, H., Crino, P. B., Zhang, H., et al. (2002) Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells and show activation of an mTOR pathway. Mol. Cell Neurosci. 21, 561–574.PubMedGoogle Scholar
  111. 111.
    Passafaro, M., Nakagawa, T., Sala, C., and Sheng, M. (2003) Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681.PubMedGoogle Scholar
  112. 112.
    Liu, L., Wong, T. P., Pozza, M. F., et al. (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024.PubMedGoogle Scholar
  113. 113.
    Kim, M. J., Dunah, A. W., Wang, Y. T., and Sheng, M. (2005) Differential roles of NR2A-and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745–760.PubMedGoogle Scholar
  114. 114.
    Dent, E. W., and Gertler, F. B. (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227.PubMedGoogle Scholar
  115. 115.
    Luo, L. (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. Biol. 18, 601–635.PubMedGoogle Scholar
  116. 116.
    Matus, A. (2000) Actin-based plasticity in dendritic spines. Science 290, 754–758.PubMedGoogle Scholar
  117. 117.
    Khurana, V., Lu, Y., Steinhilb, M. L., Oldham, S., Shulman, J. M., and Feany, M. B. (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr. Biol. 16, 230–241.PubMedGoogle Scholar
  118. 118.
    Ravikumar, B., Vacher, C., Berger, Z., et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595.PubMedGoogle Scholar
  119. 119.
    Kwiatkowski, D. J. (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther. 2, 471–476.PubMedGoogle Scholar
  120. 120.
    Jozwiak, J., and Jozwiak, S. (2005) Giant cells: contradiction to two-hit model of tuber formation? Cell Mol. Neurobiol. 25, 795–805.PubMedGoogle Scholar
  121. 121.
    Kwiatkowski, D. J. (2003) Tuberous sclerosis: from tubers to mTOR. Ann. Hum. Genet. 67, 87–96.PubMedGoogle Scholar
  122. 122.
    Inoki, K., Corradetti, M. N., and Guan, K. L. (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet. 37, 19–24.PubMedGoogle Scholar
  123. 123.
    Johannessen, C. M., Reczek, E. E., James, M. F., Brems, H., Legius, E., and Cichowski, K. (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. USA 102, 8573–8578.PubMedGoogle Scholar
  124. 124.
    Antar L. N., and Bassell, G. J. (2003) Sunrise at the synapse: the FMRP mRNP shaping the synaptic interface. Neuron 37, 555–558.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.International Institute of Molecular and Cell BiologyWarsawPoland
  2. 2.The Picower Institute for Learning and MemoryRIKEN-MIT Neuroscience Research CenterCambridge
  3. 3.Howard Hughes Medical InstituteMassachusetts Institute of TechnologyCambridge

Personalised recommendations