Advertisement

Molecular Neurobiology

, Volume 34, Issue 1, pp 67–80 | Cite as

Central nervous system functions of PAK protein family

From spine morphogenesis to mental retardation
  • Bernadett Boda
  • Irina Nikonenko
  • Stefano Alberi
  • Dominique Muller
Article

Abstract

Several of the genes currently known to be associated, when mutated, with mental retardation, code for molecules directly involved in Rho guanosine triphosphatase (GTPase) signaling. These include PAK3, a member of the PAK protein kinase family, which are important effectors of small GTPases. In many systems, PAK kinases play crucial roles regulating complex mechanisms such as cell migration, differentiation, or survival. Their precise functions in the central nervous system remain, however, unclear. Although their activity does not seem to be required for normal brain development, several recent studies point to a possible involvement in more subtle mechanisms such as neurite outgrowth, spine morphogenesis or synapse formation, and plasticity. This article reviews this information in the light of the current knowledge available on the molecular characteristics of the different members of this family and discuss the mechanisms through which they might contribute to cognitive functions.

Key Words

Rho GTPases synaptic plasticity synaptogenesis cytoskeleton brain development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bokoch G. M. (2003) Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781.PubMedCrossRefGoogle Scholar
  2. 2.
    Chelly J. and Mandel J. L. (2001) Monogenic causes of X-linked mental retardation. Nat. Rev. Genet. 2, 669–680.PubMedCrossRefGoogle Scholar
  3. 3.
    Sells M. A. (1999) Pictures in cell biology. Pak1 kinase activity affects the character of cell morphology and movement. Trends Cell. Biol. 9, 350–355.CrossRefGoogle Scholar
  4. 4.
    Bienvenu T., des Portes V., McDonell N, et al. (2000) Missense mutation in PAK3, R67C, causes X-linked nonspecific mental retardation. Am. J. Med. Genet. 93, 294–298.PubMedCrossRefGoogle Scholar
  5. 5.
    Allen K. M., Gleeson J. G., Bagrodia S., et al. (1998) PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Gedeon A. K., Nelson J., Gecz J., and Mulley J. C. (2003) X-linked mild non-syndromic mental retardation with neuropsychiatric problems and the missense mutation A365E in PAK3. Am. J. Med. Genet. A. 120, 509–517.PubMedCrossRefGoogle Scholar
  7. 7.
    Hofmann C., Shepelev M., and Chernoff J., (2004) The genetics of Pak. J. Cell Sci. 117, 4343–4354.PubMedCrossRefGoogle Scholar
  8. 8.
    Manser E., Chong C., Zhao Z. S., et al. (1995) Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 270, 25,070–25,078Google Scholar
  9. 9.
    Schmidt A. and Hall A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609.PubMedCrossRefGoogle Scholar
  10. 10.
    Peck J., Douglas G., Wu C. H., and Burbelo P. D. (2002) Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett. 528, 27–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Olofsson B. (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11, 545–554.PubMedCrossRefGoogle Scholar
  12. 12.
    Li Z., Hannigan M., Mo Z., et al. (2003) Directional sensing requires G βγ-mediated PAK1 and PIX α-dependent activation of Cdc42. Cell 114, 215–227.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhou G. L., Zhuo Y., King C. C., Fryer B. H., Bokoch G. M., and Field J. (2003) Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol. Cell Biol. 23, 8058–8069.PubMedCrossRefGoogle Scholar
  14. 14.
    Yuan Z. Q., Kim D., Kaneko S., et al. (2005) ArgBP2gamma interacts with Akt and p21-activated kinase-1 and promotes cell survival. J. Biol. Chem. 280, 21,483–21,490.Google Scholar
  15. 15.
    Lei M., Lu W., Meng W., et al. (2000) Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387–397.PubMedCrossRefGoogle Scholar
  16. 16.
    Parrini M. C., Lei M., Harrison S. C., and Mayer B. J. (2002) Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol. Cell. 9, 73–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Jaffer Z. M., and Chernoff J., (2002) p21-activated kinases: three more join the Pak. Int. J. Biochem. Cell Biol. 34, 713–717.PubMedCrossRefGoogle Scholar
  18. 18.
    Frost J. A., Steen H., Shapiro P., et al., (1997) Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16, 6426–6438.PubMedCrossRefGoogle Scholar
  19. 19.
    King A. J., Sun H., Diaz B., et al. (1998) The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396, 180–183.PubMedCrossRefGoogle Scholar
  20. 20.
    Sundberg-Smith L. J., Doherty J. T., Mack C. P., and Taylor J. M. (2005) Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J. Biol. Chem. 280, 2055–2064.PubMedCrossRefGoogle Scholar
  21. 21.
    Schmid R. S., Midkiff B. R., Kedar V. P., and Maness P. F. (2004) Adhesion molecule L1 stimulates neuronal migration through Vav2-Pak1 signaling. Neuroreport 15, 2791–2794.PubMedGoogle Scholar
  22. 22.
    Eblen S. T., Slack J. K., Weber M. J., and Catling A. D. (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol. Cell Biol. 22, 6023–6033.PubMedCrossRefGoogle Scholar
  23. 23.
    Slack-Davis J. K., Eblen S. T., Zecevic M., et al. (2003) PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J. Cell Biol. 162, 281–291.PubMedCrossRefGoogle Scholar
  24. 24.
    Deroanne C, Vouret-Craviari V., Wang B., and Pouyssegur J. (2003) EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway. J. Cell Sci. 116, 1367–1376.PubMedCrossRefGoogle Scholar
  25. 25.
    Penzes P., Beeser A., Chernoff J., et al. (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou H. and Kramer R. H. (2005) Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J. Biol. Chem. 280, 10,624–10,635.Google Scholar
  27. 27.
    Edwards D. C., Sanders L. C., Bokoch G. M., and Gill G. N. (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1, 253–259.PubMedCrossRefGoogle Scholar
  28. 28.
    Gohla A. and Bokoch G. M. (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr. Biol. 12, 1704–1710.PubMedCrossRefGoogle Scholar
  29. 29.
    Meng Y., Zhang Y., Tregoubov V., Falls D. L., and Jia Z. (2003) Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton. Rev. Neurosci. 14, 233–240.PubMedGoogle Scholar
  30. 30.
    Zhang H., Webb D. J., Asmussen H., Niu S., and Horwitz A. F. (2005) A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 25, 3379–3388.PubMedCrossRefGoogle Scholar
  31. 31.
    Vadlamudi R. K., Barnes C. J., Rayala S., et al. (2005) p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol. Cell Biol. 25, 3726–3736.PubMedCrossRefGoogle Scholar
  32. 32.
    Diebold B. A., Fowler B., Lu J., Dinauer M. C., and Bokoch G. M. (2004) Antagonistic crosstalk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J. Biol. Chem. 279, 28,136–28,142.CrossRefGoogle Scholar
  33. 33.
    Bryan B., Kumar V., Stafford L. J., Cai Y., Wu G., and Liu M. (2004) GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J. Biol. Chem. 279, 45,824–45,832.CrossRefGoogle Scholar
  34. 34.
    Zenke F. T., Krendel M., DerMardirossian C., King C. C., Bohl B. P., and Bokoch G. M. (2004) p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J. Biol. Chem. 279, 18,392–18,400.CrossRefGoogle Scholar
  35. 35.
    Hing H., Xiao J., Harden N., Lim L., and zipursky S. L. (1999) Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97, 853–863.PubMedCrossRefGoogle Scholar
  36. 36.
    Ang, L. H., Kim J., Stepensky V., and Hing H. (2003) Dock and Pak regulate olfactory axon pathfinding in Drosophila. Development 130, 1307–1316.PubMedCrossRefGoogle Scholar
  37. 37.
    Fan X., Labrador J. P., Hing H., and Bashaw G. J. (2003) Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 40, 113–127.PubMedCrossRefGoogle Scholar
  38. 38.
    Parnas D., Haghighi A. P., Fetter R. D., Kim S. W., and Goodman C. S. (2001) Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32, 415–424.PubMedCrossRefGoogle Scholar
  39. 39.
    Melzig J., Rein K. H., Schafer U., et al. (1998) A protein related to p21-activated kinase (PAK) that is involved in neurogenesis in the Drosophila adult central nervous system. Curr. Biol. 8, 1223–1226.PubMedCrossRefGoogle Scholar
  40. 40.
    Schneeberger D. and Raabe T. (2003) Mbt, a Drosophila PAK protein, combines with Cdc42 to regulate photoreceptor cell morphogenesis. Development 130, 427–437.PubMedCrossRefGoogle Scholar
  41. 41.
    Udo H., Jin I., Kim J. H., et al. (2005) Serotonin-induced regulation of the actin network for learning-related synaptic growth requires Cdc42, N-WASP, and PAK in Aplysia sensory neurons. Neuron 45, 887–901.PubMedCrossRefGoogle Scholar
  42. 42.
    Sells M. A., Boyd J. T., and Chernoff J. (1999) p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837–849.PubMedCrossRefGoogle Scholar
  43. 43.
    Dharmawardhane S., Sanders L. C., Martin S. S., Daniels R. H., and Bokoch G. M. (1997) Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell Biol. 138, 1265–1278.PubMedCrossRefGoogle Scholar
  44. 44.
    Burbelo P. D., Kozak C. A., Finegold A. A., Hall A., and Pirone D. M. (1999) Cloning, central nervous system expression and chromosomal mapping of the mouse PAK-1 and PAK-3 genes. Gene 232, 209–215.PubMedCrossRefGoogle Scholar
  45. 45.
    Daniels R. H., Hall P. S., and Bokoch G. M. (1998) Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J 17, 754–764.PubMedCrossRefGoogle Scholar
  46. 46.
    Rashid T., Banerjee M., and Nikolic M. (2001) Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J. Biol. Chem. 276, 49,043–49,052.CrossRefGoogle Scholar
  47. 47.
    Shekarabi M., Moore S. W., Tritsch N. X., Morris S. J., Bouchard J. F., and Kennedy T. E. (2005) Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion. J. Neurosci. 25, 3132–3141.PubMedCrossRefGoogle Scholar
  48. 48.
    Hayashi M. L., Choi S. Y., Rao B. S., et al. (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron 42, 773–787.PubMedCrossRefGoogle Scholar
  49. 49.
    Ramakers G. J. (2002) Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci. 25, 191–199.PubMedCrossRefGoogle Scholar
  50. 50.
    Ropers H. H. and Hamel B. C. (2005) X-linked mental retardation. Nat. Rev. Genet. 6, 46–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Matus A. (2000) Actin-based plasticity in dendritic spines. Science 290, 754–758.PubMedCrossRefGoogle Scholar
  52. 52.
    Harris K. M. (1999) Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348.PubMedCrossRefGoogle Scholar
  53. 53.
    Yuste R. and Bonhoeffer T. (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5, 24–34.PubMedCrossRefGoogle Scholar
  54. 54.
    Luscher C., Nicoll R. A., Malenka R. C., and Muller D. (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545–550.PubMedCrossRefGoogle Scholar
  55. 55.
    Malinow R. and Malenka R. C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126.PubMedCrossRefGoogle Scholar
  56. 56.
    Kohn M., Steinbach P., Hameister H., and Kehrer-Sawatzki H. (2004) A comparative expression analysis of four MRX genes regulating intracellular signalling via small GTPases. Eur. J. Hum. Genet. 12, 29–37.PubMedCrossRefGoogle Scholar
  57. 57.
    Wilda M., Bachner D., Zechner U., Kehrer-Sawatzki H., Vogel W., and Hameister H. (2000) Do the constraints of human speciation cause expression of the same set of genes in brain, testis, and placenta? Cytogenet. Cell Genet. 91, 300–302.PubMedCrossRefGoogle Scholar
  58. 58.
    Obermeier A., Ahmed S., Manser E., Yen S. C., Hall C., and Lim L. (1998) PAK promotes morphological changes by acting upstream of Rac. EMBO J. 17, 4328–4339.PubMedCrossRefGoogle Scholar
  59. 59.
    Boda B., Alberi S., Nikonenko I., et al. (2004) The mental retardation protein PAK3 contributes to synapse formation and plasticity in hippocampus. J. Neurosci. 24, 10,816–10,825.CrossRefGoogle Scholar
  60. 60.
    Purpura D. P. (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186, 1126–1128.PubMedCrossRefGoogle Scholar
  61. 61.
    Meng J., Meng Y., Hanna A., Janus C., and Jia Z. (2005) Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J. Neurosci. 25, 6641–6650.PubMedCrossRefGoogle Scholar
  62. 62.
    McPhie D. L., Coopersmith R., Hines-Peralta A., et al. (2003) DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J. Neurosci. 23, 6914–6927.PubMedGoogle Scholar
  63. 63.
    Jakobi R., McCarthy C. C., Koeppel M. A., and Stringer D. K. (2003) Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J. Biol. Chem. 278, 38,675–38,685.CrossRefGoogle Scholar
  64. 64.
    Nunn M. F. and Marsh J. W. (1996) Human immunodeficiency virus type 1 Nef associates with a member of the p21-activated kinase family. J. Virol. 70, 6157–6161.PubMedGoogle Scholar
  65. 65.
    Shin E. Y., Shin K. S., Lee C. S., et al., (2002) Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J. Biol. Chem. 277, 44,417–44,430.Google Scholar
  66. 66.
    Abo A., Qu J., Cammarano M. S., et al. (1998) PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J. 17, 6527–6540.PubMedCrossRefGoogle Scholar
  67. 67.
    Dan C., Kelly A., Bernard O., and Minden A. (2001) Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J. Biol. Chem. 276, 32,115–32,121.CrossRefGoogle Scholar
  68. 68.
    Callow M. G., Clairvoyant F., Zhu S., et al. (2002) Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J. Biol. Chem. 277, 550–558.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang H., Li Z., Viklund E. K., and Stromblad S. (2002) P21-activated kinase 4 interacts with integrin alpha v beta 5 and regulates alpha v beta 5-mediated cell migration. J. Cell Biol. 158, 1287–1297.PubMedCrossRefGoogle Scholar
  70. 70.
    Qu J., Li X., Novitch B. G., et al. (2003) PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol. Cell Biol. 23, 7122–7133.PubMedCrossRefGoogle Scholar
  71. 71.
    Cau J., Faure S., Comps M., Delsert C., and Morin N. (2001) A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J. Cell Biol. 155, 1029–1042.PubMedCrossRefGoogle Scholar
  72. 72.
    Dan C., Nath N., Liberto M., and Minden A. (2002) PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol. Cell Biol. 22, 567–577.PubMedCrossRefGoogle Scholar
  73. 73.
    Pandey A., Dan I., Kristiansen T. Z., et al. (2002) Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene 21, 3939–3948.PubMedCrossRefGoogle Scholar
  74. 74.
    Cotteret S., Jaffer Z. M., Beeser A., and Chernoff J. (2003) p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol. Cell Biol. 23, 5526–5539.PubMedCrossRefGoogle Scholar
  75. 75.
    Li X. and Minden A. (2003) Targeted disruption of the gene for the PAK5 kinase in mice. Mol. Cell Biol. 23, 7134–7142.PubMedCrossRefGoogle Scholar
  76. 76.
    Yang F., Li X., Sharma M., Zarnegar M., Lim B., and Sun Z. (2001) Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J. Biol. Chem. 276, 15,345–15,353.Google Scholar
  77. 77.
    Lee S. R., Ramos S. M., Ko A., et al. (2002) AR and ER interaction with a p21-activated kinase (PAK6). Mol. Endocrinol. 16, 85–99.PubMedCrossRefGoogle Scholar
  78. 78.
    Duboule D. and Wilkins A. S. (1998) The evolution of bricolage. Trends Genet. 14, 54–59.PubMedCrossRefGoogle Scholar
  79. 79.
    Luo L. (2000) Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180.PubMedCrossRefGoogle Scholar
  80. 80.
    Lisman J. (2003) Actin's actions in LTP-induced synapse growth. Neuron 38, 361–362.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Bernadett Boda
    • 1
  • Irina Nikonenko
    • 1
  • Stefano Alberi
    • 1
  • Dominique Muller
    • 1
  1. 1.Department of NeuroscienceCentre Médical UniversitaireGeneva 4Switzerland

Personalised recommendations